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1
AMD-K5™ Processor 
x86 Architecture Extensions

The AMD-K5™ processor is compatible with the instruction 
set, programming model, memory management mechanisms, 
and other software infrastructure supported by the 486 and 
Pentium (735\90, 815\100) processors. Operating system and 
application software that runs on the Pentium processor can be 
executed on the AMD-K5 processor without modification. 
Because the AMD-K5 processor takes a significantly different 
approach to implementing the x86 architecture, some subtle 
differences from the Pentium processor may be visible to sys-
tem and code developers. These differences are described in 
Appendix A of the AMD-K5 Processor Technical Reference Man-
ual, order# 18524.

Call AMD at 1-800-222-9232 to order AMD-K5 processor sup-
port documents.

Before implementing the AMD-K5 processor model-specific 
features, check CPUID for supported feature flags. See 
“CPUID” on page 29 for more information.
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Additions to the EFLAGS Register

The EFLAGS register on the AMD-K5 processor defines new 
bits in the upper 16 bits of the register to support extensions to 
the operating modes. See “Virtual-8086 Mode Extensions 
(VME)” on page 12 and “CPUID” on page 29 for additional 
information.

Control Register 4 (CR4) Extensions

Control Register 4 (CR4) was added on the AMD-K5 processor. 
The bits in this register control the various architectural exten-
sions. The majority of the bits are reserved. The default state 
of CR4 is all zeros. Figure 1-1 shows the register and describes 
the bits. The architectural extensions are described in Table 
1-1.

Figure 1-1.   Control Register 4 (CR4)

Global Page Extension GPE 7
Machine Check Enable MCE 6
Page Size Extension PSE 4
Debugging Extensions DE 3
Time Stamp Disable TSD 2
Protected Virtual Interrupts PVI 1
Virtual-8086 Mode Extensions VME 0

7 6 5 4 3 2 1 031

P
S
E

T
S
D

M
C
E

V
M
E

D
E

P
V
I

G
P
E

Reserved

8



Control Register 4 (CR4) Extensions 3

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Table 1-1. Control Register 4 (CR4) Fields

Bit Mnemonic Description Function

7 GPE Global Page 
Extension

Enables retention of designated entries in the 4-Kbyte TLB or 
4-Mbyte TLB during invalidations. 

1 = enabled, 0 = disabled. 

See “Global Pages” on page 9 for details. 

6 MCE Machine-Check Enable

Enables machine-check exceptions. 

1 = enabled, 0 = disabled. 

See “Machine-Check Exceptions” on page 4 for details. 

4 PSE Page Size 
Extension

Enables 4-Mbyte pages. 

1 = enabled, 0 = disabled. 

See “4-Mbyte Pages” on page 4 for details. 

3 DE
Debugging 
Extensions

Enables I/O breakpoints in the DR7–DR0 registers. 

1 = enabled, 0 = disabled. 

See “Debug Registers” on page 84 for details. 

2 TSD
Time Stamp 
Disable

Selects privileged (CPL=0) or non-privileged (CPL>0) use of 
the RDTSC instruction, which reads the Time Stamp Counter 
(TSC). 

1 = CPL must be 0, 0 =any CPL. 

See “Time Stamp Counter (TSC)” on page 27 for details. 

1 PVI Protected Virtual 
Interrupts

Enables hardware support for interrupt virtualization in Pro-
tected mode. 

1 = enabled, 0 = disabled. 

See “Protected Virtual Interrupt (PVI) Extensions” on page 24 
for details. 

0 VME Virtual-8086 
Mode Extensions

Enables hardware support for interrupt virtualization in Vir-
tual-8086 mode. 

1 = enabled, 0 = disabled. 

See “Virtual-8086 Mode Extensions (VME)” on page 12 for 
details. 
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Machine-Check Exceptions 

Bit 6 in CR4, the machine-check enable (MCE) bit, controls 
generation of machine-check exceptions (12h). If enabled by 
the MCE bit, these exceptions are generated when either of 
the following occurs: 

■ System logic asserts BUSCHK to identify a parity or other 
type of bus-cycle error

■ The processor asserts PCHK while system logic asserts PEN 
to identify an enabled parity error on the D63–D0 data bus

Whether or not machine-check exceptions are enabled, the 
processor does the following when either type of bus error 
occurs: 

■ Latches the physical address of the failed cycle in its 64-bit 
machine-check address register (MCAR)

■ Latches the cycle definition of the failed cycle in its 64-bit 
machine-check type register (MCTR)

Software can read the MCAR and MCTR registers in the excep-
tion handling routine with the RDMSR instruction, as 
described on page 34. The format of the registers is shown in 
Figure 1-8 and Figure 1-9. 

If system software has cleared the MCE bit in CR4 to 0 before 
a bus-cycle error, the processor attempts to continue execution 
without generating a machine-check exception. It still latches 
the address and cycle type in MCAR and MCTR as described in 
this section. 

4-Mbyte Pages

The TLBs in the 486 and 386 processors support only 4-Kbyte 
pages. However, large data structures such as a video frame 
buffer or non-paged operating system code can consume many 
pages and easily overrun the TLB. The AMD-K5 processor 
accommodates large data structures by allowing the operating 
system to specify 4-Mbyte pages as well as 4-Kbyte pages, and 
by implementing a four-entry, fully-associative 4-Mbyte TLB 
which is separate from the 128-entry, 4-Kbyte TLB. From a 
given page directory, the processor can access both 4-Kbyte 
pages and 4-Mbyte pages, and the page sizes can be intermixed 
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within a page directory. When the Page Size Extension (PSE) 
bit in CR4 is set, the processor translates linear addresses 
using either the 4-Kbyte TLB or the 4-Mbyte TLB, depending 
on the state of the page size (PS) bit in the page-directory 
entry. Figures 1-2 and 1-3 show how 4-Kbyte and 4-Mbyte page 
translation work. 

Figure 1-2.   4-Kbyte Paging Mechanism
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Figure 1-3.   4-Mbyte Paging Mechanism 
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4-Kbyte page translation differs from 4-Mbyte page translation 
in the following ways: 

■ 4-Kbyte Paging (Figure 1-2)—Bits 31–22 of the linear address 
select an entry in a 4-Kbyte page directory in memory, 
whose physical base address is stored in CR3. Bits 21–12 of 
the linear address select an entry in a 4-Kbyte page table in 
memory, whose physical base address is specified by bits 
31–22 of the page-directory entry. Bits 11–0 of the linear 
address select a byte in a 4-Kbyte page, whose physical base 
address is specified by the page-table entry. 

■ 4-Mbyte Paging (Figure 1-3)—Bits 31–22 of the linear 
address select an entry in a 4-Mbyte page directory in mem-
ory, whose physical base address is stored in CR3. Bits 21–0 
of the linear address select a byte in a 4-Mbyte page in 
memory, whose physical base address is specified by bits 
31–22 of the page-directory entry. Bits 21–12 of the page-
directory entry must be cleared to 0. 

Figure 1-4.   Page-Directory Entry (PDE) 
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Table 1-2. Page-Directory Entry (PDE) Fields

Bit Mnemonic Description Function

31–12 BASE
Physical Base 
Address

For 4-Kbyte pages, bits 31–12 contain the physical base address of 
a 4-Kbyte page table. 

For 4-Mbyte pages, bits 31–22 contain the physical base address 
of a 4-Mbyte page and bits 21–12 must be cleared to 0. (The pro-
cessor will generate a page fault if bits 21–12 are not cleared to 0.) 

11–9 AVL Available to Software
Software may use this field to store any type of information. When 
the page-directory entry is not present (P bit cleared), bits 31–1 
become available to software. 

8 G Global 0 = local, 1 = global.

7 PS Page Size 0 = 4-Kbyte, 1 = 4-Mbyte.

6 D Dirty

For 4-Kbyte pages, this bit is undefined and ignored. The proces-
sor does not change it. 

0 = not written, 1 = written. 

For 4-Mbyte pages, the processor sets this bit to 1 during a write 
to the page that is mapped by this page-directory entry. 

0 = not written, 1 = written.

5 A Accessed
The processor sets this bit to 1 during a read or write to any page 
that is mapped by this page-directory entry. 

0 = not read or written, 1 = read or written.

4 PCD Page Cache 
Disable

Specifies cacheability for all pages mapped by this page-directory 
entry. Whether a location in a mapped page is actually cached 
also depends on several other factors. 

0 = cacheable page, 1 = non-cacheable. 

3 PWT Page Writethrough

Specifies writeback or writethrough cache protocol for all pages 
mapped by this page-directory entry. Whether a location in a 
mapped page is actually cached in a writeback or writethrough 
state also depends on several other factors. 

0 = writeback page, 1 = writethrough page. 

2 U/S User/Supervisor 0 = user (any CPL), 1 = supervisor (CPL < 3).

1 W/R Write/Read 0 = read or execute, 1 = write, read, or execute.

0 P Present 0 = not valid, 1 = valid.
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Global Pages

The processor’s performance can sometimes be improved by 
making some pages global to all tasks and procedures. This can 
be done for both 4-Kbyte pages and 4-Mbyte pages. 

The processor invalidates (flushes) both the 4-Kbyte TLB and 
the 4-Mbyte TLB whenever CR3 is loaded with the base 
address of the new task’s page directory. The processor loads 
CR3 automatically during task switches, and the operating sys-
tem can load CR3 at any other time. Unnecessary invalidation 
of certain TLB entries can be avoided by specifying those 
entries as global (a global TLB entry references a global page). 
This improves performance after TLB flushes. Global entries 
remain in the TLB and need not be reloaded. For example, 
entries may reference operating system code and data pages 
that are always required. The processor operates faster if these 
entries are retained across task switches and procedure calls. 

To specify individual pages as global: 

1. Set the Global Page Extension (GPE) bit in CR4. 

2. (Optional) Set the Page Size Extension (PSE) bit in CR4. 

3. Set the relevant Global (G) bit for that page:

For 4-Kbyte pages—Set the G bit in both the page-directory 
entry (shown in Figure 1-4 and Table 1-2) and the page-
table entry (shown in Figure 1-5 and Table 1-3). 

For 4-Mbyte pages—(Optional) After the PSE bit in CR4 is 
set, set the G bit in the page-directory entry (shown in Fig-
ure 1-4 and Table 1-2). 

4. Load CR3 with the base address of the page directory. 

The INVLPG instruction clears both the V and G bits for the 
referenced entry. To invalidate all entries, including global-
page entries, in both TLBs: 

1. Clear the Global Page Extension (GPE) bit in CR4.

2. Load CR3 with the base address of another (or same) page 
directory. 

TLB Flushing In models 1, 2, and 3 of the AMD-K5 processors with stepping 
level of 4 or greater, the processor flushes both the 4-Kbyte 
TLB and the 4-Mbyte TLB (including global entries) whenever 
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the GPE bit in CR4 is set or reset. Model 0 and models 1, 2, and 
3 with stepping level less than 4 do not flush the TLBs when 
the GPE bit is set or reset.

It is not necessary to load CR3 with the base address of the 
page directory in order to flush the TLBs on models 1, 2, and 3 
of the AMD-K5 processors with stepping level of 4 or greater.

Figure 1-5.   Page-Table Entry (PTE) 
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Table 1-3. Page-Table Entry (PTE) Fields

Bit Mnemonic Description Function

31–12 BASE Physical Base 
Address The physical base address of a 4-Kbyte page. 

11–9 AVL Available to Soft-
ware

Software may use the field to store any type of information. 
When the page-table entry is not present (P bit cleared), bits 31–1 
become available to software. 

8 G Global 0 = local, 1 = global.

7 PS Page Size
This bit is ignored in page-table entries, although clearing it to 0 
preserves consistent usage of this bit between page-table and 
page-directory entries. 

6 D Dirty
The processor sets this bit to 1 during a write to the page that is 
mapped by this page-table entry. 

0 = not written, 1 = written.

5 A Accessed
The processor sets this bit to 1 during a read or write to any page 
that is mapped by this page-table entry. 

0 = not read or written, 1 = read or written.

4 PCD Page Cache Disable

Specifies cacheability for all locations in the page mapped by this 
page-table entry. Whether a location is actually cached also 
depends on several other factors. 

0 = cacheable page, 1 = non-cacheable. 

3 PWT Page Writethrough

Specifies writeback or writethrough cache protocol for all loca-
tions in the page mapped by this page-table entry. Whether a 
location is actually cached in a writeback or writethrough state 
also depends on several other factors. 

0 = writeback, 1 = writethrough. 

2 U/S User/Supervisor 0 = user (any CPL), 1 = supervisor (CPL < 3).

1 W/R Write/Read 0 = read or execute, 1 = write, read, or execute.

0 P Present 0 = not valid, 1 = valid.
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Virtual-8086 Mode Extensions (VME)

The Virtual-8086 Mode Extensions (VME) bit in CR4 (bit 0) 
enable performance enhancements for 8086 programs running 
as protected tasks in Virtual-8086 mode. These extensions 
include:

■ Virtualizing maskable external interrupt control and notifi-
cation via the VIF and VIP bits in EFLAGS

■ Selectively intercepting software interrupts (INTn instruc-
tions) via the Interrupt Redirection Bitmap (IRB) in the 
Task State Segment (TSS)

Interrupt Redirection 
in Virtual-8086 Mode 
Without VME 
Extensions

8086 programs expect to have full access to the interrupt flag 
(IF) in the EFLAGS register, which enables maskable external 
interrupts via the INTR signal. When 8086 programs run in Vir-
tual-8086 mode on a 386 or 486 processor, they run as pro-
tected tasks and access to the IF flag must be controlled by the 
operating system on a task-by-task basis to prevent corruption 
of system resources. 

Without the VME extensions available on the AMD-K5 proces-
sor, the operating system controls Virtual-8086 mode access to 
the IF flag by trapping instructions that can read or write this 
flag. These instructions include STI, CLI, PUSHF, POPF, INTn, 
and IRET. This method prevents changes to the real IF when 
the I/O privilege level (IOPL) in EFLAGS is less than 3, the 
privilege level at which all Virtual-8086 tasks run. The operat-
ing system maintains an image of the IF flag for each Virtual-
8086 program by emulating the instructions that read or write 
IF. When an external maskable interrupt occurs, the operating 
system checks the state of the IF image for the current Virtual-
8086 program to determine whether the program is allowing 
interrupts. If the program has disabled interrupts, the operat-
ing system saves the interrupt information until the program 
attempts to re-enable interrupts. 

The overhead for trapping and emulating the instructions that 
enable and disable interrupts, and the maintenance of virtual 
interrupt flags for each Virtual-8086 program, can degrade the 
processor’s performance. This performance can be regained by 
running Virtual-8086 programs with IOPL set to 3, thus allow-
ing changes to the real IF flag from any privilege level, but 
with a loss in protection. 
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In addition to these performance problems caused by virtual-
ization of the IF flag in Virtual-8086 mode, software interrupts 
(those caused by INTn instructions that vector through inter-
rupt gates) cannot be masked by the IF flag or virtual copies of 
the IF flag, these flags only affect hardware interrupts. Soft-
ware interrupts in Virtual-8086 mode are normally directed to 
the Real mode interrupt vector table (IVT), but it may be 
desirable to redirect interrupts for certain vectors to the Pro-
tected mode interrupt descriptor table (IDT). 

The processor’s Virtual-8086 mode extensions support both of 
these cases—hardware (external) interrupts and software 
interrupts—with mechanisms that preserve high performance 
without compromising protection. Virtualization of hardware 
interrupts is supported via the Virtual Interrupt Flag (VIF) 
and Virtual Interrupt Pending (VIP) flag in the EFLAGS regis-
ter. Redirection of software interrupts is supported with the 
Interrupt Redirection Bitmap (IRB) in the TSS of each Virtual-
8086 program. 

Hardware Interrupts 
and the VIF and VIP 
Extensions

When VME extensions are enabled, the IF-modifying instruc-
tions that are normally trapped by the operating system are 
allowed to execute, but they write and read the VIF bit rather 
than the IF bit in EFLAGS. This leaves maskable interrupts 
enabled for detection by the operating system. It also indicates 
to the operating system whether the Virtual-8086 program is 
able to or expecting to receive interrupts. 

When an external interrupt occurs, the processor switches 
from the Virtual-8086 program to the operating system, in the 
same manner as on a 386 or 486 processor. If the operating sys-
tem determines that the interrupt is for the Virtual-8086 pro-
gram, it checks the state of the VIF bit in the program’s 
EFLAGS image on the stack. If VIF has been set by the proces-
sor (during an attempt by the program to set the IF bit), the 
operating system permits access to the appropriate Virtual-
8086 handler via the interrupt vector table (IVT). If VIF has 
been cleared, the operating system holds the interrupt pend-
ing. The operating system can do this by saving appropriate 
information (such as the interrupt vector), setting the pro-
gram's VIP flag in the EFLAGS image on the stack, and return-
ing to the interrupted program. When the program 
subsequently attempts to set IF, the set VIP flag causes the 
processor to inhibit the instruction and generate a general-
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protection exception with error code zero, thereby notifying 
the operating system that the program is now prepared to 
accept the interrupt. 

Thus, when VME extensions are enabled, the VIF and VIP bits 
are set and cleared as follows: 

■ VIF—This bit is controlled by the processor and used by the 
operating system to determine whether an external 
maskable interrupt should be passed on to the program or 
held pending. VIF is set and cleared for instructions that 
can modify IF, and it is cleared during software interrupts 
through interrupt gates. The original IF value is preserved 
in the EFLAGS image on the stack. 

■ VIP—This bit is set and cleared by the operating system via 
the EFLAGS image on the stack. It is set when an interrupt 
occurs for a Virtual-8086 program who’s VIF bit is cleared. 
The bit is checked by the processor when the program sub-
sequently attempts to set VIF. 

Figure 1-6 and Table 1-4 show the VIF and VIP bits in the 
EFLAGS register. The VME extensions support conventional 
emulation methods for passing interrupts to Virtual-8086 pro-
grams, but they make it possible for the operating system to 
avoid time-consuming emulation of most instructions that 
write or read the IF. 

The VIF and IF flags only affect the way the operating system 
deals with hardware interrupts (the INTR signal). Software 
interrupts are handled like machine-generated exceptions and 
cannot be masked by real or virtual copies of IF (see “Software 
Interrupts and the Interrupt Redirection Bitmap (IRB) Exten-
sion” on page 20). The VIF and VIP flags only ease the soft-
ware overhead associated with managing interrupts so that 
virtual copies of the IF flag do not have to be maintained by 
the operating system. Instead, each task’s TSS holds its own 
copy of these flags in its EFLAGS image. 
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Figure 1-6.   EFLAGS Register 
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Table 1-5A through Table 1-5E shows the effects, in various 
x86-processor modes, of instructions that read or write the IF 
and VIF flag. The column headings in this table include the fol-
lowing values: 

■ PE—Protection Enable bit in CR0 (bit 0)

■ VM—Virtual-8086 Mode bit in EFLAGS (bit 17)

■ VME—Virtual Mode Extensions bit in CR4 (bit 0)

■ PVI—Protected-mode Virtual Interrupts bit in CR4 (bit 1)

■ IOPL—I/O Privilege Level bits in EFLAGS (bits 13–12)

■ Handler CPL—Code Privilege Level of the interrupt han-
dler

■ GP(0)—General-protection exception, with error code = 0

■ IF—Interrupt Flag bit in EFLAGS (bit 9)

■ VIF—Virtual Interrupt Flag bit in EFLAGS (bit 19)

Table 1-5A. Instructions that Modify the IF or VIF Flags—Real Mode

TYPE PE VM VME PVI IOPL GP(0) IF VIF

CLI 0 0 0 0 — No IF ← 0 —

STI 0 0 0 0 — No IF ← 1 —

PUSHF 0 0 0 0 — No Pushed —

POPF 0 0 0 0 — No Popped —

IRET 0 0 0 0 — No Popped —
Notes:

— Not applicable.
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Table 1-5B. Instructions that Modify the IF or VIF Flags—Protected Mode

TYPE PE VM VME PVI IOPL Handler
 CPL GP(0) IF VIF

CLI 1 0 — 0 ≥ CPL — No IF ← 0 —

CLI 1 0 — 0 < CPL — Yes — —

STI 1 0 — 0 ≥ CPL — No IF ← 1 —

STI 1 0 — 0 < CPL — Yes — —

PUSHF 1 0 — 0 ≥ CPL — No Pushed —

PUSHF 1 0 — 0 < CPL — No Pushed —

PUSHFD 1 0 — 0 ≥ CPL — No Pushed Pushed

PUSHFD 1 0 — 0 < CPL — No Pushed Pushed

POPF 1 0 — 0 ≥ CPL — No Popped —

POPF 1 0 — 0 < CPL — No Not Popped —

POPFD 1 0 — 0 ≥ CPL — No Popped Not Popped

POPFD 1 0 — 0 < CPL — No Not Popped Not Popped

IRET 1 0 — 0 — = 0 No Popped —

IRET 1 0 — 0 ≥ CPL > 0 No1 Popped —

IRET 1 0 — 0 < CPL > 0 No1 Not Popped —

IRETD 1 0 — 0 — = 0 No Popped Popped

IRETD 1 0 — 0 ≥ CPL > 0 No1 Popped Not Popped

IRETD 1 0 — 0 < CPL > 0 No1 Not Popped Not Popped

Notes:
1. GP(0) if the CPL of the task executing IRETD is greater than the CPL of the task returned to.
— Not applicable.
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Table 1-5C. Instructions that Modify the IF or VIF Flags—Virtual-8086 Mode

TYPE PE VM VME PVI IOPL GP(0) IF VIF

CLI 1 1 0 — 3 No IF ← 0 No Change

CLI 1 1 0 — < 3 Yes — —

STI 1 1 0 — 3 No IF ← 1 No Change

STI 1 1 0 — < 3 Yes — —

PUSHF 1 1 0 — 3 No Pushed —

PUSHF 1 1 0 — < 3 Yes — —

PUSHFD 1 1 0 — 3 No Pushed Pushed

PUSHFD 1 1 0 — < 3 Yes — —

POPF 1 1 0 — 3 No Popped —

POPF 1 1 0 — < 3 Yes — —

POPFD 1 1 0 — 3 No Popped Not Popped

POPFD 1 1 0 — < 3 Yes — —

IRETD2 1 1 0 — — No Popped Popped

Notes:
1. All Virtual-8086 mode tasks run at CPL = 3.
2. All protected virtual interrupt handlers run at CPL = 0.
— Not applicable.
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Table 1-5D. Instructions that Modify the IF or VIF Flags—Virtual-8086 Mode Interrupt 
Extensions (VME)1

TYPE PE VM VME PVI IOPL GP(0) IF VIF

CLI 1 1 1 —  3 No IF ← 0 No Change

CLI 1 1 1 — < 3 No No Change VIF ← 0

STI 1 1 1 —  3 No IF ← 1 No Change

STI 1 1 1 — < 3 No3 No Change VIF ← 1

PUSHF 1 1 1 —  3 No Pushed Not Pushed

PUSHF 1 1 1 — < 3 No Not Pushed Pushed into IF

PUSHFD 1 1 1 —  3 No Pushed Pushed

PUSHFD 1 1 1 — < 3 Yes — —

POPF 1 1 1 —  3 No Popped Not Popped

POPF 1 1 1 — < 3 No Not Popped Popped from IF

POPFD 1 1 1 —  3  No Popped Not Popped 

POPFD 1 1 1 — < 3 Yes — —

IRET from
V86 Mode

1 1 1 — 3 No Popped Not Popped

IRET from
V86 Mode

1 1 1 — < 3 No3 Not Popped Popped from IF

IRETD from
V86 Mode

1 1 1 —  3 No Popped Not Popped

IRETD from
V86 Mode

1 1 1 — < 3 Yes — —

IRETD from
Protected Mode2 1 1 1 — — No3 Popped Popped

Notes:
1. All Virtual-8086 mode tasks run at CPL = 3.
2. All protected virtual interrupt handlers run at CPL = 0.
3. GP(0) if an attempt is made to set VIF when VIP = 1.
— Not applicable.
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Software Interrupts 
and the Interrupt 
Redirection Bitmap 
(IRB) Extension

In Virtual-8086 mode, software interrupts (INTn exceptions 
that vector through interrupt gates) are trapped by the operat-
ing system for emulation, because they would otherwise clear 
the real IF. When VME extensions are enabled, these INTn 
instructions are allowed to execute normally, vectoring 
directly to a Virtual-8086 service routine via the Virtual-8086 
interrupt vector table (IVT) at address 0 of the task address 
space. However, it may still be desirable for security or perfor-
mance reasons to intercept INTn instructions on a vector-
specific basis to allow servicing by Protected-mode routines 
accessed through the interrupt descriptor table (IDT). This is 
accomplished by an Interrupt Redirection Bitmap (IRB) in the 
TSS, which is created by the operating system in a manner sim-
ilar to the IO Permission Bitmap (IOPB) in the TSS. 

Figure 1-7 shows the format of the TSS, with the Interrupt 
Redirection Bitmap near the top. The IRB contains 256 bits, 
one for each possible software-interrupt vector. The most-

Table 1-5E. Instructions that Modify the IF or VIF Flags—Protected Mode Virtual
Interrupt Extensions (PVI)1

TYPE PE VM VME PVI IOPL GP(0) IF VIF

CLI 1 0 — 1  3 No IF ← 0 No Change

CLI 1 0 — 1 < 3 No No Change VIF ← 0

STI 1 0 — 1  3 No IF ← 1 No Change

STI 1 0 — 1 < 3 No3 No Change VIF ← 1

PUSHF 1 0 — 1  3 No Pushed Not Pushed

PUSHF 1 0 — 1 < 3 No Pushed Not Pushed

PUSHFD 1 0 — 1  3 No Pushed Pushed

PUSHFD 1 0 — 1 < 3 No Pushed Pushed

POPF 1 0 — 1  3 No Popped Not Popped

POPF 1 0 — 1 < 3 No Not Popped Not Popped

POPFD 1 0 — 1  3 No Popped Not Popped

POPFD 1 0 — 1 < 3 No Not Popped Not Popped

IRETD2 1 0 — 1 — No3 Popped Popped

Notes:
1. All Protected mode virtual interrupt tasks run at CPL = 3.
2. All protected mode virtual interrupt handlers run at CPL = 0.
3. GP(0) if an attempt is made to set VIF when VIP = 1.
— Not applicable.
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significant bit of the IRB is located immediately below the 
base of the IOPB. This bit controls interrupt vector 255. The 
least-significant bit of the IRB controls interrupt vector 0. 

The bits in the IRB work as follows:

■ Set—If set to 1, the INTn instruction behaves as if the VME 
extensions are not enabled. The interrupt vectors to a Pro-
tected-mode routine if IOPL = 3, or it causes a general-pro-
tection exception with error code zero if IOPL<3. 

■ Cleared—If cleared to 0, the INTn instruction vectors 
directly to the corresponding Virtual-8086 service routine 
via the Virtual-8086 program’s IVT. 

Only software interrupts can be redirected via the IRB to a 
Real mode IVT—hardware interrupts cannot. Hardware inter-
rupts are asynchronous events and do not belong to any cur-
rent virtual task. The processor thus has no way of deciding 
which IVT (for which Virtual-8086 program) to direct a hard-
ware interrupt to. Because of this, hardware interrupts always 
require operating system intervention. The VIF and VIP bits 
described in “Hardware Interrupts and the VIF and VIP Exten-
sions” on page 13 are provided to assist the operating system 
in this intervention. 
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Figure 1-7.   Task State Segment (TSS)
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Table 1-6 compares the behavior of hardware and software 
interrupts in various x86-processor operating modes. It also 
shows which interrupt table is accessed: the Protected-mode 
IDT or the Real- and Virtual-8086-mode IVT. The column head-
ings in this table include: 

■ PE—Protection Enable bit in CR0 (bit 0)

■ VM—Virtual-8086 Mode bit in EFLAGS (bit 17)

■ VME—Virtual Mode Extensions bit in CR4 (bit 0)

■ PVI—Protected-Mode Virtual Interrupts bit in CR4 (bit 1)

■ IOPL—I/O Privilege Level bits in EFLAGS (bits 13–12)

■ IRB—Interrupt Redirection Bit for a task, from the Inter-
rupt Redirection Bitmap (IRB) in the tasks TSS

■ GP(0)—General-protection exception, with error code = 0

■ IDT—Protected-Mode Interrupt Descriptor Table

■ IVT—Real- and Virtual-8086 Mode Interrupt Vector Table

Table 1-6. Interrupt Behavior and Interrupt-Table Access

Mode Interrupt 
Type PE VM VME PVI IOPL IRB GP(0) IDT IVT

Real mode
Software 0 0 0 — 0 — —  — ✓

Hardware 0 0 0 — 0 — —  — ✓

Protected mode
Software 1 0 0 — — — — ✓ —

Hardware 1 0 0 — — — — ✓  —

Virtual-8086 
mode1

Software 1 1 0 — = 3 — No ✓  —

Software 1 1 0 — < 3 — Yes ✓  —

Hardware 1 1 0 — — — No ✓  —

Virtual-8086 
Mode Exten-
sions (VME)1

Software 1 1 1 0 — 0 No — ✓

Software 1 1 1 0 = 3 1 No ✓  —

Software 1 1 1 0 < 3 1 Yes ✓  —

Hardware 1 1 1 0 — — No ✓  —

Protected Vir-
tual Extensions 
(PVI)

Software 1 0 1 1 — — No ✓ —

Hardware 1 0 1 1 — — No ✓ —

Notes:
1. All Virtual-8086 tasks run at CPL = 3. 
— Not applicable. 
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Protected Virtual Interrupt (PVI) Extensions

The Protected Virtual Interrupts (PVI) bit in CR4 enables sup-
port for interrupt virtualization in Protected mode. In this vir-
tualization, the processor maintains program-specific VIF and 
VIP flags in a manner similar to those in Virtual-8086 Mode 
Extensions (VME). When a program is executed at CPL = 3, it 
can set and clear its copy of the VIF flag without causing 
general-protection exceptions. 

The only differences between the VME and PVI extensions are 
that, in PVI, selective INTn interception using the Interrupt 
Redirection Bitmap in the TSS does not apply, and only the STI 
and CLI instructions are affected by the extension. 

Table 1-5A through Table 1-5E and Table 1-6 show, among 
other things, the behavior of hardware and software inter-
rupts, and instructions that affect interrupts, in Protected 
mode with the PVI extensions enabled. 

Implementation of Write Allocate

The AMD-K5 processor implements write allocate by providing 
a global write allocate enable bit, three range-protection 
enable bits, and two memory range registers. The global write 
allocate enable bit is accessed using the Hardware Configura-
tion Register (HWCR). The memory range registers and range 
enable bits are programmed by read/write model-specific reg-
ister (MSR) instructions.

For details regarding programming write allocate in the K86-
family processors, see the application note “Implementation of 
Write Allocate in the K86 Processors,” order# 21326.
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Model-Specific Registers (MSRs)

The processor supports model-specific registers (MSRs) that 
can be accessed with the RDMSR and WRMSR instructions 
when CPL = 0. The following index values in the ECX register 
access specific MSRs: 

■ 00h: Machine-Check Address Register (MCAR)
■ 01h: Machine-Check Type Register (MCTR)
■ 10h: Time Stamp Counter (TSC)
■ 82h: Array Access Register (AAR)
■ 83h: Hardware Configuration Register (HWCR)
■ 85h: Write Allocate Top-of-Memory and Control Register 

(WATMCR)
■ 86h: Write Allocate Programmable Memory Range Register 

(WAPMRR)

Machine-Check Address Register (MCAR)

The processor latches the address of the current bus cycle in 
its 64-bit Machine-Check Address Register (MCAR) when a 
bus-cycle error occurs. These errors are indicated either by (a) 
system logic asserting BUSCHK, or (b) the processor asserting 
PCHK while system logic asserts PEN. 

The MCAR can be read with the RDMSR instruction when the 
ECX register contains the value 00h. Figure 1-8 shows the for-
mat of the MCAR register. The contents of the register can be 
read with the RDMSR instruction. 

If system software has set the MCE bit in CR4 before the bus-
cycle error, the processor also generates a machine-check 
exception as described on page 4. 

Figure 1-8.   Machine-Check Address Register (MCAR) 

063

Physical Address of Last Bus Cycle that Failed
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Machine-Check Type Register (MCTR)

The processor latches the cycle definition and other informa-
tion about the current bus cycle in its 64-bit Machine-Check 
Type Register (MTAR) at the same times that the Machine-
Check Address Register (MCAR) latches the cycle address: 
when a bus-cycle error occurs. These errors are indicated 
either by (a) system logic asserting BUSCHK, or (b) the proces-
sor asserting PCHK while system logic asserts PEN. 

The MCTR can be read with the RDMSR instruction when the 
ECX register contains the value 01h. Figure 1-9 and Table 1-7 
show the formats of the MCTR register. The contents of the 
register can be read with the RDMSR instruction. The proces-
sor clears the CHK bit (bit 0) in MCTR when the register is 
read with the RDMSR instruction. 

If system software has set the MCE bit in CR4 before the bus-
cycle error, the processor also generates a machine-check 
exception as described on page 4. 

Figure 1-9.   Machine-Check Type Register (MCTR) 

Locked Cycle LOCK 4
Memory or I/O Cycle M/IO 3
Data or Code Cycle D/C 2
Write or Read Cycle W/R 1
Valid Machine-Check Data CHK 0

5 4 3 2 1 063

C
H
K

D
/
C

W
/
R

L
O
C
K

M
/
I
O

Reserved



Model-Specific Registers (MSRs) 27

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Time Stamp Counter (TSC)

With each processor clock cycle, the processor increments a 64-
bit time stamp counter (TSC) model-specific register. The 
counter can be written or read using the WRMSR or RDMSR 
instructions when the ECX register contains the value 10h and 
CPL = 0. The counter can also be read using the RDTSC 
instruction (see page 33) but the required privilege level for 
this instruction is determined by the Time Stamp Disable 
(TSD) bit in CR4. With any of these instructions, the EDX and 
EAX registers hold the upper and lower double-words (dwords) 
of the 64-bit value to be written to or read from the TSC, as
follows: 

■ EDX—Upper 32 bits of TSC

■ EAX—Lower 32 bits of TSC

The TSC can be loaded with any arbitrary value. 

Array Access Register (AAR)

The Array Access Register (AAR) contains pointers for testing 
the tag and data arrays for the instruction cache, data cache, 4-
Kbyte TLB, and 4-Mbyte TLB. The AAR can be written or read 
with the WRMSR or RDMSR instruction when the ECX regis-
ter contains the value 82h. 

For details on the AAR, see “Cache and TLB Testing” on page 
75. 

Table 1-7. Machine-Check Type Register (MCTR) Fields

Bit Mnemonic Description Function

4 LOCK Locked Cycle Set to 1 if the processor was asserting LOCK during the bus 
cycle. 

3 M/IO Memory or I/O 1 = memory cycle, 0 = I/O cycle. 

2 D/C Data or Code 1 = data cycle, 0 = code cycle. 

1 W/R Write or Read 1 = write cycle, 0 = read cycle. 

0 CHK
Valid Machine-Check 
Data

The processor sets the CHK bit to 1 when both the MCTR and 
MCAR registers contain valid information. The processor clears 
the CHK bit to 0 when software reads the MCTR with the 
RDMSR instruction.
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Hardware Configuration Register (HWCR)

The Hardware Configuration Register (HWCR) contains con-
figuration bits that control miscellaneous debugging functions. 
The HWCR can be written or read with the WRMSR or 
RDMSR instruction when the ECX register contains the value 
83h. 

For details on the HWCR, see “Hardware Configuration Regis-
ter (HWCR)” on page 71. 

Write Allocate Top-of-Memory and Control Register (WATMCR)

The Write Allocate Top-of-Memory and Control Register 
(WATMCR) contains bits that enable write allocate range con-
trols and a field to specify the top-of-memory address limit for 
write allocate operations. The WATMCR can be written or 
read with the WRMSR or RDMSR instruction when the ECX 
register contains the value 85h. 

Write Allocate Programmable Memory Range Register (WAPMRR)

The Write Allocate Programmable Memory Range Register 
(WAPMRR) contains fields that specify the top and bottom 
addresses of the programmable memory range. The WAPMRR 
can be written or read with the WRMSR or RDMSR instruction 
when the ECX register contains the value 86h. 

New Instructions

In addition to supporting all the 486 processor instructions, the 
AMD-K5 processor implements the following instructions:

■ CPUID
■ CMPXCHG8B
■ MOV to and from CR4
■ RDTSC
■ RDMSR
■ WRMSR
■ RSM

■ Illegal instruction (Reserved opcode)



New Instructions 29

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

CPUID

mnemonic opcode description

CPUID 0F A2h Identify processor

Privilege: Any level
Registers Affected: EAX, EBX, ECX, EDX
Flags Affected: none
Exceptions Generated: Real, Virtual-8086 mode—none

Protected mode—none

The CPUID instruction identifies the type of processor and the features it supports. 
A 0 or 1 value written to the EAX register specifies what information will be 
returned by the instruction. 

The processor implements the ID flag (bit 21) in the EFLAGS register. By writing and 
reading this bit, software can verify that the processor will execute the CPUID 
instruction. 

For detailed instructions on processor and feature identification see the AMD Proces-
sor Recognition application note, order# 20734.

Table 1-8 outlines the AMD-K5 processor family codes and model codes with the CPU 
clock frequencies (MHz), bus frequencies (MHz), and P-Rating strings (“PRxxx”).

Table 1-8. CPU Clock Frequencies, Bus Frequencies, and P-Rating Strings

Family Code Model Code CPU Frequency (MHz) CPU Bus Frequency (MHz) P-Rating String (“PRxxx”)1

5

0

75 50 PR75

90 60 PR90

100 66 PR100

1
90 60 PR120

100 66 PR133

2 116.7 66 PR166

3 133 66 PR200
Notes:

1. The CPUID instruction does not return a P-Rating string.

— This table does not constitute product announcements. Instead, the information in the table represents possible product offerings. 
AMD will announce actual products based on availability and market demand.
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The list below prioritizes the recommended BIOS CPU ID strings. The primary 
requirement is that if the CPU clock frequency is to be displayed the P-rating must 
also be displayed.

Recommended:

“AMD-K5-PRxxx” No clock or bus frequency information is displayed.

OR

“AMD-K5-PRxxx”
“yyy MHz”
“zzz Mhz”

“PRxxx” indicates the P-Rating for the installed K86™ processor. “yyy MHz” indicates 
the clock frequency of the processor. “zzz Mhz” indicates the bus frequency of the 
processor. Display of the bus frequency is encouraged, but not required.

Acceptable:

“AMD-K5”
The default is recommended if the clock frequency detected is not in the P-Rating 
table. The actual frequency should not be displayed anywhere in the boot-up dis-
play.
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CMPXCHG8B

mnemonic opcode description

CMPXCHG8B r/m64 0F C7h Compare and exchange 8-byte operand

Privilege: Any level
Registers Affected: EAX, EBX, ECX, EDX
Flags Affected: ZF
Exceptions Generated: Real, Virtual-8086, Protected mode—GP(0). Invalid opcode if destination is a register. 

Virtual-8086 mode—Page fault

The CMPXCHG8B instruction is an 8-byte version of the 4-byte CMPXCHG instruc-
tion supported by the 486 processor. CMPXCHG8B compares a value from memory 
with a value in the EDX and EAX register, as follows: 

■ EDX—Upper 32 bits of compare value

■ EAX—Lower 32 bits of compare value

If the memory value matches the value in EDX and EAX, the ZF flag is set to 1 and 
the 8-byte value in ECX and EBX is written to the memory location, as follows: 

■ ECX—Upper 32 bits of exchange value

■ EBX—Lower 32 bits of exchange value
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MOV to and from CR4

mnemonic opcode description

MOV CR4,r32 0F 22h Move to CR4 from register
MOV r32,CR4 0F 20h Move to register from CR4

Privilege: CPL = 0
Registers Affected: CR4, 32-bit general-purpose register
Flags Affected: OF, SF, ZF, AF, PF, and CF are undefined
Exceptions Generated: Real mode—none

Virtual-8086 mode—GP(0)
Protected mode—GP(0) if CPL not = 0

These instructions read and write control register 4 (CR4).
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RDTSC

mnemonic opcode description

RDTSC 0F 31h Read time stamp counter

Privilege: Selectable by TSD bit in CR4
Registers Affected: EAX, EDX
Flags Affected: none
Exceptions Generated: Real—none

Virtual-8086 mode—Invalid Opcode
Protected mode—GP (0) if CPL not = 0 when CR4.TSD=1

The AMD-K5 processor’s 64-bit time stamp counter (TSC) increments on each proces-
sor clock. In Real or Protected mode, the counter can be read with the RDMSR 
instruction and written with the WRMSR instruction when CPL = 0. However, in Pro-
tected mode the RDTSC instruction can be used to read the counter at privilege lev-
els higher than CPL = 0. 

The required privilege level for using the RDTSC instruction is determined by the 
Time Stamp Disable (TSD) bit in CR4, as follows: 

■ CPL = 0—Set the TSD bit in CR4 to 1

■ Any CPL—Clear the TSD bit in CR4 to 0

The RDTSC instruction reads the counter value into the EDX and EAX registers as 
follows: 

■ EDX—Upper 32 bits of TSC 

■ EAX—Lower 32 bits of TSC 

The following example shows how the RDTSC instruction can be used. After this 
code is executed, EAX and EDX contain the time required to execute the RDTSC 
instruction. 

mov ecx,10h ;Time Stamp Counter Access via MSRs
mov eax,00000000h ;Initialize the Counter to zero
db 0Fh, 30h ;WRMSR
db 0Fh, 31h ;RDTSC
db 0Fh, 31h ;RDTSC
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RDMSR and WRMSR

mnemonic opcode description

RDMSR 0F 32h Read model-specific register (MSR)
WRMSR 0F 30h Write model-specific register (MSR)

Privilege: CPL=0
Registers Affected: EAX, ECX, EDX
Flags Affected: none
Exceptions Generated: Real—GP(0) for unimplemented MSR address

Virtual-8086 mode—GP(0)
Protected mode—GP(0) if CPL not = 0
Protected mode—GP(0) for unimplemented MSR address

The RDMSR or WRMSR instructions can be used in Real or Protected mode to access 
several 64-bit, model-specific registers (MSRs). These registers are addressed by the 
value in ECX, as follows:

■ 00h: Machine-Check Address Register (MCAR). This may contain the physical 
address of the last bus cycle for which the BUSCHK or PCHK signal was asserted. 
For details, see “Machine-Check Address Register (MCAR)” on page 25. 

■ 01h: Machine-Check Type Register (MCTR). This contains the cycle definition of 
the last bus cycle for which the BUSCHK or PCHK signal was asserted. For 
details, see “Machine-Check Type Register (MCTR)” on page 26. The processor 
clears the CHK bit (bit 0) in MCTR when the register is read with the RDMSR 
instruction. 

■ 10h: Time Stamp Counter (TSC). This contains a time value. The TSC can be ini-
tialized to any value with the WRMSR instruction, and it can be read with either 
the RDMSR or RDTSC instruction. For details, see “Time Stamp Counter (TSC)” 
on page 27. 

■ 82h: Array Access Register (AAR). This contains an array pointer and test data 
for testing the processor’s cache and TLB arrays. For details on the AAR, see 
“Cache and TLB Testing” on page 75. 

■ 83h: Hardware Configuration Register (HWCR). This contains configuration bits 
that control miscellaneous debugging functions. For details, see “Hardware Con-
figuration Register (HWCR)” on page 71. 
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■ 85h: Write Allocate Top-of-Memory and Control Register (WATMCR). This regis-
ter contains bits that enable write allocate range controls and a field to specify 
the top-of-memory address limit for write allocate operations. For details on the 
WATMCR, see “Implementation of Write Allocate in the AMD-K5 Processor” in 
this amendment.

■ 86h: Write Allocate Programmable Memory Range Register (WAPMRR). This reg-
ister contains fields that specify the top and bottom addresses of the programma-
ble memory range. For details on the WAPMRR, see “Implementation of Write 
Allocate in the AMD-K5 Processor” in this amendment.

The above value in ECX identifies the register to be read or written. The EDX and 
EAX registers contain the MSR values to be read or written, as follows: 

■ EDX—Upper 32 bits of MSR. For the AAR, this contains the array pointer and (in 
contrast to all other MSRs) its contents are not altered by a RDMSR instruction. 

■ EAX—Lower 32 bits of MSR. For the AAR, this contains the data to be read/writ-
ten.

All MSRs are 64 bits wide. However, the upper 32 bits of the AAR are write-only and 
are not returned on a read. EDX remains unaltered, making it more convenient to 
maintain the array pointer. 

If an attempt is made to execute either the RDMSR or WRMSR instruction when 
CPL is greater than 0, or to access an undefined model-specific register, the proces-
sor generates a general-protection exception with error code zero. 

Model-specific registers, as their name implies, may or may not be implemented by 
later models of the AMD-K5 processor. 
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RSM

mnemonic opcode description

RSM 0F AAh Resume execution (exit System Management Mode)

Privilege: CPL = 0 
Registers Affected: CS, DS, ES, FS, GS, SS, EIP, EFLAGS, LDTR, 

CR3, EAX, EBX, ECX, EDX, ESP, EBP, EDI, ESI
Flags Affected: none
Exceptions Generated: Real, Virtual-8086 mode—Invalid opcode if not in SMM

Protected mode—Invalid opcode if not in SMM
Protected mode—GP(0) if CPL not = 0

The RSM instruction should be the last instruction in any System Management Mode 
(SMM) service routine. It restores the processor state that was saved when the SMI 
interrupt was asserted. This instruction is only valid when the processor is in SMM. It 
generates an invalid opcode exception at all other times.

The processor enters the Shutdown state if any of the following illegal conditions are 
encountered during the execution of the RSM instruction: the SMM base value is not 
aligned on a 32-Kbyte boundary, or any reserved bit of CR4 set to 1, or the PG bit is 
set while the PE is cleared in CR0, or the NW bit it set while the CD bit is cleared in 
CR0. 
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Illegal Instruction (Reserved Opcode)

mnemonic opcode description

(none) 0F FFh Illegal instruction (reserved opcode)

Privilege: Any level
Registers Affected: none
Flags Affected: none
Exceptions Generated: Real, Virtual-8086 mode—Invalid opcode

Protected mode—Invalid opcode
Protected mode—Invalid opcode

This opcode always generates an invalid opcode exception. The opcode will not be 
used in future AMD K86 processors. 
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2
Code Optimization for the 
AMD-K5 Processor

This chapter provides information to assist fast execution and 
details on dispatch and execution timing for x86 instructions. 
Throughout the chapter, the terms clock and cycle refer to pro-
cessor clock cycles, not bus clock (CLK) cycles. 

Code Optimization

The code optimization suggestions in this section cover both 
general superscalar optimization (that is, techniques common 
to both the AMD-K5 and Pentium processors) and techniques 
specific to the AMD-K5 processor. In general, all optimization 
techniques used for the Pentium processor apply to any wide-
issue x86 processor, but wider-issue designs like the AMD-K5 
processor have fewer restrictions. 

General Superscalar Techniques
■ Short Forms—Use shorter forms of instructions to increase 

the effective number of instructions that can be examined 
for decoding at any one time. Use 8-bit displacements and 
jump offsets where possible.

■ Simple Instructions—Use simple instructions with hard-
wired decode because they often perform more efficiently. 
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Moreover, future implementations may increase the penal-
ties associated with microcoded instructions. 

■ Dependencies—Spread out true dependencies to increase 
the opportunities for parallel execution. Antidependencies 
and output dependencies do not impact performance.

■ Memory Operands—Instructions that operate on data in 
memory (load/op/store) can inhibit parallelism. Using sepa-
rate move and ALU instructions allows independent opera-
tions to be performed in parallel. On the other hand, if 
there are no opportunities for parallel execution, use the 
load/op/store forms to reduce the number of register spills 
(storing register values in memory to free registers for 
other uses) and increase code density.

■ Register Operands—Maintain frequently used values in reg-
isters or on the stack rather than in static storage.

■ Branch Prediction—Use control-flow constructs that allow 
effective branch prediction. Although correctly predicted 
branches have no cost, mispredicted branches incur a three 
clock penalty.

■ Stack References—Use ESP for references to the stack so 
that EBP remains available for general use.

■ Stack Allocation—When placing outgoing parameters on the 
stack, allocate space by adjusting the stack pointer (prefer-
ably at the same time local storage is allocated on proce-
dure entry) and use moves rather than pushes. This method 
of allocation allows random access to the outgoing parame-
ters so that they may be set up when they are calculated, 
instead of having to be held somewhere else until the proce-
dure call. This method also uses fewer execution resources 
(specifically, fewer register-file write ports when updating 
ESP).

■ Shifts—Although there is only one shifter, certain shifts can 
be done using other execution units: for example, shift left 
1 by adding a value to itself. Use LEA index scaling to shift 
left by 1, 2, or 3.

■ Data Embedded in Code—When data is embedded in the 
code segment, align it in separate cache blocks from nearby 
code to avoid some overhead in maintaining coherency 
between the instruction and data caches.

■ Undefined Flags—Do not rely on the behavior of undefined 
flag results. 
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■ Loops—Unroll loops to get more parallelism and reduce 
loop overhead even with branch prediction. Inline small 
routines to avoid procedure-call overhead. In both cases, 
however, consider the cost of possible increased register 
usage, which might add load/store instructions for register 
spilling.

■ Indexed Addressing—There is no penalty for base + index 
addressing in the AMD-K5 processor. However, future 
implementations may have such a penalty to achieve a 
higher overall clock rate.

Techniques Specific to the AMD-K5 Processor
■ Jumps and Loops—JCXZ requires 1 cycle (correctly pre-

dicted) and therefore is faster than a TEST/JZ, in contrast 
to the Pentium processor in which JCXZ requires 5 or 6 
cycles. All forms of LOOP take 2 cycles (correctly pre-
dicted), which is also faster than the Pentium processor's 7 
or 8 cycles.

■ Multiplies—Independent IMULs can be pipelined at one 
per cycle with 4-cycle latency, in contrast to the Pentium 
processor's serialized 9-cycle time. (MUL has the same 
latency, although the implicit AX usage of MUL prevents 
independent, parallel MUL operations.)

■ Dispatch Conflicts—Load-balancing (that is, selecting 
instructions for parallel decode) is still important, but to a 
lesser extent than on the Pentium processor. In particular, 
arrange instructions to avoid execution-unit dispatching 
conflicts. (See page 43.)

■ Instruction Prefixes—There is no penalty for instruction pre-
fixes, including combinations such as segment-size and 
operand-size prefixes. This is particularly important for 16-
bit code. However, future implementations may have penal-
ties for the use of these prefixes.

■ Byte Operations—For byte operations, the high and low 
bytes of AX, BX, CX, and DX are effectively independent 
registers that can be operated on in parallel. For example, 
reading AL does not have a dependency on an outstanding 
write to AH.

■ Move and Convert—MOVZX, MOVSX, CBW, CWDE, CWD, 
CDQ all take 1 cycle (2 cycles for memory-based input), in 
contrast to the Pentium processor's 2 or 3 cycles. 
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■ Bit Scan—BSF and BSR take 1 cycle (2 cycles for memory-
based input), in contrast to the Pentium processor's data-
dependent 6 to 34 cycles.

■ Bit Test—BT, BTS, BTR, and BTC take 1 cycle for register-
based operands, and 2 or 3 cycles for memory-based oper-
ands with immediate bit-offset, in contrast to the Pentium 
processor's 4 to 9 cycles. Register-based bit-offset forms on 
the AMD-K5 processor take 5 cycles. If the semantics of the 
register-based bit-offset form are desired (where the bit off-
set can cover a very large bit string in memory), it is better 
to emulate this with simpler instructions that can be inter-
leaved with independent instructions for greater 
parallelism.

■ Floating-Point Top-of-Stack Bottleneck—The AMD-K5 proces-
sor has a pipelined floating-point unit. Greater parallelism 
can be achieved by using FXCH in parallel with floating-
point operations to alleviate the top-of-stack bottleneck, as 
in the Pentium processor. The AMD-K5 processor also per-
mits integer operations (ALU, branch, load/store) in paral-
lel with floating-point operations.

■ Locating Branch Targets—Performance can be sensitive to 
code alignment, especially in tight loops. Locating branch 
targets to the first 17 bytes of the 32-byte cache line maxi-
mizes the opportunity for parallel execution at the target. 
NOPs can be added to adjust this alignment. The AMD-K5 
processor executes NOPs (opcode 90h) at the rate of two per 
cycle. Adding NOPs is even more effective if they execute 
in parallel with existing code. Other instructions of greater 
length, such as a register-based TEST instruction, can be 
used as NOPs to minimize the overhead of such padding.

■ Branch Prediction—There are two branch prediction bits in 
a 32-byte instruction cache line. One bit applies to the first 
16 bytes of the line and the second bit applies to the second 
16 bytes of the line. For effective branch prediction, code 
should be generated with one branch per 16-byte line half.

■ Address-Generation Interlocks (AGIs)—The AMD-K5 proces-
sor does not suffer from the single-cycle penalty that the 
486 and Pentium processors have when a result from execu-
tion or from a data-cache access is used to form a cache 
address, so it is not necessary to avoid these situations.
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Dispatch and Execution Timing

This section documents functional unit usage for each instruc-
tion, along with relative cycle numbers for dispatch and execu-
tion of the associated ROPs for the instruction.

Notation

Table 2-1 contains the definitions for the integer instructions. 
Table 2-3 contains the definitions for the floating-point instruc-
tions. The first column in these tables indicates the instruction 
mnemonic and operand types. The following notations are used 
in the AMD-K5 microprocessor documentation:

■ reg—register

■ mem—memory location

■ imm—immediate value

■ int_16—16-bit integer

■ int_32—32-bit integer

■ int_64—64-bit integer

■ real_32—32-bit floating-point number

■ real_64—64-bit floating-point number

■ real_80—80-bit floating-point number 

If an operand refers to a specific register, the register name is 
used (e.g., AX, DX). When the register name is of the form Exx 
(e.g., EAX, ESI), the width of the register depends on the oper-
and size attribute.
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The second column contains an identifier with the following 
format:

The third column in the tables indicates whether the instruc-
tion is Fastpath (F) or Microcoded (M). Fastpath and MROM 
ROPs cannot both be present in a decode stage at the same 
time. If a microcoded instruction appears at the head of the 
byte queue without having been present in the queue on the 
previous cycle, there is a one-cycle penalty for MROM entry 
point generation.

Each x86 instruction is converted into one or more ROPs. The 
fourth column shows the execution unit and timing for each of 
the ROPs. The ROP types and corresponding execution units 
are:

■ ld—load/store

■ st—load/store

■ alu—either alu0 or alu1

■ alu0—alu0 only

■ alu1—alu1 only

■ brn—branch

■ fadd—floating-point add pipe

■ fmul—floating-point multiply pipe

■ fpmv—floating-point move and compare pipe

■ fpfill—floating-point upper half

MODrm[2:0]

1 = two-byte opcode (0F xx)

MODrm[5:3]

Opcode

Addressing Mode:
 0x = register
 10 = memory without index
 1x = memory with or without index
 11 = memory with index

x_xx_xxxxxxxx_xxx_xxx
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The x/y value following the ROP type indicates the relative dis-
patch and execution cycle of the opcode, in the absence of any 
conflicts. The format is:

x/y[/z]

where: 

■ x = Dispatch Cycle—The relative cycle in which the ROP is 
dispatched from decode to the reservation station.

■ y = Execution Cycle—The relative cycle in which the ROP is 
issued from the reservation station to the execution unit.

■ z = Result Cycle—The relative cycle in which the result is 
returned on the result bus. It is indicated only when the 
latency is greater than one cycle. For stores, it reflects the 
relative time that a store operand can be forwarded from 
the store buffer to a dependent load operation. 

Using the time that the first ROP of an instruction is dis-
patched to an execution unit as clock 1, the x/y value indicates 
in which clock each ROP is dispatched and executed relative to 
clock 1. The execution order and timing does not necessarily 
match the dispatch order and timing.

If any of the instructions read from or write to memory, it is 
assumed that the data exists in the cache.
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Integer Instructions

Table 2-1 shows the execution-unit usage for each integer 
instruction, along with relative cycle numbers for dispatch and 
execution of the associated ROPs for the instruction. 

Table 2-1.   Integer Instructions

Instruction Mnemonic Opcode Format Fastpath or 
Microcode

Execution 
Unit Timing

ADD reg, reg 0_0x_000000xx_xxx_xxx F alu 1/1

ADD reg, mem 0_1x_0000001x_xxx_xxx F ld 1/1
alu 1/2

ADD mem, reg 0_1x_0000000x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

ADD AL/AX/EAX, imm 0_xx_0000010x_xxx_xxx F alu 1/1

ADD reg, imm 0_0x_100000xx_000_xxx F alu 1/1

ADD mem, imm 0_1x_100000xx_000_xxx F
ld 1/1
alu 1/2
st 1/1/3

AND reg, reg 0_0x_001000xx_xxx_xxx F alu 1/1

AND reg, mem 0_1x_0010001x_xxx_xxx F ld 1/1
alu 1/2

AND mem, reg 0_1x_0010000x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

AND AL/AX/EAX, imm 0_xx_0010010x_xxx_xxx F alu 1/1

AND reg, imm 0_0x_100000xx_100_xxx F alu 1/1

AND mem, imm 0_1x_100000xx_100_xxx F
ld 1/1
alu 1/2
st 1/1/3

BSF reg, reg 1_0x_10111100_xxx_xxx F alu1 1/1

BSF reg, mem 1_1x_10111100_xxx_xxx F ld 1/1
alu1 1/2

BSR reg, reg 1_0x_10111101_xxx_xxx F alu1 1/1

BSR reg, mem 1_1x_10111101_xxx_xxx F ld 1/1
alu1 1/2

BSWAP reg 1_xx_11001xxx_xxx_xxx F alu1 1/1

BT reg, reg 1_0x_10100011_xxx_xxx F alu1 1/1
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BT mem, reg 1_1x_10100011_xxx_xxx M

alu1 1/1
alu 1/2
alu 2/3
ld 2/4
alu1 3/5

BT reg, imm 1_0x_10111010_100_xxx F alu1 1/1

BT mem, imm 1_1x_10111010_100_xxx F
ld 1/1
alu1 1/2

BTC reg, reg 1_0x_10111011_xxx_xxx F alu1 1/1

BTC mem, reg 1_1x_10111011_xxx_xxx M

alu1 1/1
alu 1/2
alu 2/3
ld 2/4
alu1 3/5
st 3/5/6

BTC reg, imm 1_0x_10111010_111_xxx F alu1 1/1

BTC mem, imm 1_1x_10111010_111_xxx F
ld 1/1
alu1 1/2
st 1/1/3

BTR reg, reg 1_0x_10110011_xxx_xxx F alu1 1/1

BTR mem, reg 1_1x_10110011_xxx_xxx M

alu1 1/1
alu 1/2
alu 2/3
ld 2/4
alu1 3/5
st 3/5/6

BTR reg, imm 1_0x_10111010_110_xxx F alu1 1/1

BTR mem, imm 1_1x_10111010_110_xxx F
ld 1/1
alu1 1/2
st 1/1/3

BTS reg, reg 1_0x_10101011_xxx_xxx F alu1 1/1

BTS mem, reg 1_1x_10101011_xxx_xxx M

alu1 1/1
alu 1/2
alu 2/3
ld 2/4
alu1 3/5
st 3/5/6

BTS reg, imm 1_0x_10111010_101_xxx F alu1 1/1

Table 2-1.   Integer Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcode

Execution 
Unit Timing
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BTS mem, imm 1_1x_10111010_101_xxx F
ld 1/1
alu1 1/2
st 1/1/3

CALL near relative 0_xx_11101000_xxx_xxx M

alu 1/1
st 1/1/2
alu 1/1
brn 1/1

CALL near reg 0_0x_11111111_010_xxx M

alu 1/1
st 1/1/2
alu 1/1
brn 1/1

CALL near mem 0_1x_11111111_010_xxx M

alu 1/1
ld 1/1
st 1/1/2
alu 1/1
brn 2/2

CBW/DE 0_xx_10011000_xxx_xxx F alu1 1/1

CMP reg, reg 0_0x_001110xx_xxx_xxx F alu 1/1

CMP reg, mem 0_1x_0011101x_xxx_xxx F ld 1/1
alu 1/2

CMP mem, reg 0_1x_0011100x_xxx_xxx F ld 1/1
alu 1/2

CMP AL/AX/EAX, imm 0_xx_0011110x_xxx_xxx F alu 1/1

CMP reg, imm 0_0x_100000xx_111_xxx F alu  1/1

CMP mem, imm 0_1x_100000xx_111_xxx F ld 1/1
alu 1/2

CWD/DQ 0_xx_10011001_xxx_xxx F alu1 1/1

DEC reg 0_xx_01001xxx_xxx_xxx F alu 1/1

DEC reg 0_0x_1111111x_001_xxx F alu 1/1

DEC mem 0_1x_1111111x_001_xxx F
ld 1/1
alu 1/2
st 1/1/3

IMUL AX, AL, reg 0_0x_11110110_101_xxx F fpfill 1/1/4
fmul 1/1/4

IMUL EDX:EAX, EAX, reg 0_0x_11110111_101_xxx F fpfill 1/1/4
fmul 1/1/4

IMUL reg, reg 1_0x_10101111_xxx_xxx F fpfill 1/1/4
fmul 1/1/4

Table 2-1.   Integer Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcode

Execution 
Unit Timing
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IMUL reg, reg, imm 0_0x_011010x1_xxx_xxx F fpfill 1/1/4
fmul 1/1/4

IMUL AX, AL, mem 0_1x_11110110_101_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

IMUL EDX:EAX, EAX, mem 0_1x_11110111_101_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

IMUL reg, mem 1_1x_10101111_xxx_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

IMUL reg, reg, mem 0_1x_011010x1_xxx_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

INC reg 0_xx_01000xxx_xxx_xxx F alu 1/1

INC reg 0_0x_1111111x_000_xxx F alu 1/1

INC mem 0_1x_1111111x_000_xxx F
ld 1/1
alu 1/2
st 1/1/3

Jcc short displacement 0_xx_0111xxxx_xxx_xxx F brn 1/1

Jcc long displacement 1_xx_1000xxxx_xxx_xxx F brn 1/1

JCXZ short displacement 0_xx_11100011_xxx_xxx F brn 1/1

JMP long displacement 0_xx_11101001_xxx_xxx F brn 1/1

JMP short displacement 0_xx_11101011_xxx_xxx F brn 1/1

JMP reg 0_0x_11111111_100_xxx F brn 1/1

JMP mem 0_1x_11111111_100_xxx F ld 1/1
brn 1/2

LEA 0_1x_10001101_xxx_xxx F ld 1/1

LOOP short displacement 0_xx_11100010_xxx_xxx F alu 1/1
brn 1/2

LOOPE short displacement 0_xx_11100001_xxx_xxx M alu 1/1
brn 1/2

LOOPNE short displacement 0_xx_11100000_xxx_xxx M alu 1/1
brn 1/2

MOV reg, reg 0_0x_100010xx_xxx_xxx F alu 1/1

MOV reg, mem 0_1x_1000101x_xxx_xxx F ld 1/1

MOV mem, reg 0_10_1000100x_xxx_xxx F st 1/1

Table 2-1.   Integer Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcode

Execution 
Unit Timing
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MOV mem, reg

(base + index addressing)
0_11_1000100x_xxx_xxx F ld 1/1

st 1/2/3

MOV AL/AX/EAX, mem 0_xx_1010000x_xxx_xxx F ld 1/1

MOV mem, AL/AX/EAX 0_xx_1010001x_xxx_xxx F st 1/1

MOV reg, imm 0_0x_1100011x_000_xxx F alu 1/1

MOV reg, imm 0_xx_1011xxxx_xxx_xxx F alu 1/1

MOV mem, imm 0_10_1100011x_000_xxx F alu 1/1
st 1/1

MOV mem, imm

(base + index addressing)
0_11_1100011x_000_xxx F

alu 1/1
ld 1/1
st 1/2/3

MOVSX reg, reg 1_0x_1011111x_xxx_xxx F alu1 1/1

MOVSX reg, mem 1_1x_1011111x_xxx_xxx F ld 1/1
alu1 1/2

MOVZX reg, reg 1_0x_1011011x_xxx_xxx F alu 1/1

MOVZX reg, mem 1_1x_1011011x_xxx_xxx F ld 1/1
alu 1/2

MUL AX, AL, reg 0_0x_11110110_100_xxx F fpfill 1/1/4
fmul 1/1/4

MUL EDX:EAX, EAX, reg 0_0x_11110111_100_xxx F fpfill 1/1/4
fmul 1/1/4

MUL AX, AL, mem 0_1x_11110110_100_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

MUL EDX:EAX, EAX, mem 0_1x_11110111_100_xxx F
ld 1/1
fpfill 1/2/4
fmul 1/2/4

NEG reg 0_0x_1111011x_011_xxx F alu 1/1

NEG mem 0_1x_1111011x_011_xxx F
ld 1/1
alu 1/2
st 1/1/3

NOP (XCHG EAX, EAX) 0_xx_10010000_xxx_xxx F alu 1/1

NOT reg 0_0x_1111011x_010_xxx F alu 1/1

NOT mem 0_1x_1111011x_010_xxx F
ld 1/1
alu 1/2
st 1/1/3

OR reg, reg 0_0x_000010xx_xxx_xxx F alu 1/1

Table 2-1.   Integer Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcode

Execution 
Unit Timing
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OR reg, mem 0_1x_0000101x_xxx_xxx F ld 1/1
alu 1/2

OR mem, reg 0_1x_0000100x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

OR AL/AX/EAX, imm 0_xx_0000110x_xxx_xxx F alu 1/1

OR reg, imm 0_0x_100000xx_001_xxx F alu  1/1

OR mem, imm 0_1x_100000xx_001_xxx F
ld 1/1
alu 1/2
st 1/1/3

POP reg 0_xx_01011xxx_xxx_xxx F ld 1/1
alu 1/1

POP reg 0_0x_10001111_000_xxx F ld 1/1
alu 1/1

POP mem 0_1x_10001111_000_xxx M

ld 1/1
ld 1/1
st 2/2/3
alu 2/2

PUSH reg 0_xx_01010xxx_xxx_xxx F st 1/1
alu 1/1/2

PUSH reg 0_0x_11111111_110_xxx F st 1/1
alu 1/1/2

PUSH imm 0_xx_011010x0_xxx_xxx F
alu 1/1
st 1/1/2
alu 1/1

PUSH mem 0_1x_11111111_110_xxx M
ld 1/1
st 1/1/2
alu 1/1

RET near 0_xx_11000011_xxx_xxx F
ld 1/1
alu 1/1
brn 1/2

RET near imm 0_xx_11000010_xxx_xxx M

ld 1/1
alu 1/1
alu 1/2
brn 1/2

ROL reg, 1 0_0x_1101000x_000_xxx F alu1 1/1

ROL mem, 1 0_1x_1101000x_000_xxx F
ld 1/1
alu1 1/2
st 1/1/3

Table 2-1.   Integer Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcode

Execution 
Unit Timing
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ROL reg, imm 0_0x_1100000x_000_xxx F alu1 1/1

ROL mem, imm 0_1x_1100000x_000_xxx F
ld 1/1
alu1 1/2
st 1/1/3

ROL reg, CL 0_0x_1101001x_000_xxx F alu1 1/1

ROL mem, CL 0_1x_1101001x_000_xxx F
ld 1/1
alu1 1/2
st 1/1/3

ROR reg, 1 0_0x_1101000x_001_xxx F alu1 1/1

ROR mem, 1 0_1x_1101000x_001_xxx F
ld 1/1
alu1 1/2
st 1/1/3

ROR reg, imm 0_0x_1100000x_001_xxx F alu1 1/1

ROR mem, imm 0_1x_1100000x_001_xxx F
ld 1/1
alu1 1/2
st 1/1/3

ROR reg, CL 0_0x_1101001x_001_xxx F alu1 1/1

ROR mem, CL 0_1x_1101001x_001_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SAR reg, 1 0_0x_1101000x_111_xxx F alu1 1/1

SAR mem, 1 0_1x_1101000x_111_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SAR reg, mem 0_0x_1100000x_111_xxx F alu1 1/1

SAR mem, imm 0_1x_1100000x_111_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SAR reg, CL 0_0x_1101001x_111_xxx F alu1 1/1

SAR mem, CL 0_1x_1101001x_111_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SETcc reg 1_0x_1001xxxx_xxx_xxx F brn 1/1

SETcc mem 1_1x_1001xxxx_xxx_xxx F
brn 1/1
ld 1/1
st 1/2/3

SHL reg, 1 0_0x_1101000x_1x0_xxx F alu1 1/1

Table 2-1.   Integer Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcode

Execution 
Unit Timing
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SHL mem, 1 0_1x_1101000x_1x0_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHL reg, mem 0_0x_1100000x_1x0_xxx F alu1 1/1

SHL mem, imm 0_1x_1100000x_1x0_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHL reg, CL 0_0x_1101001x_1x0_xxx F alu1 1/1

SHL mem, CL 0_1x_1101001x_1x0_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHLD reg, reg, imm 1_0x_10100100_xxx_xxx F alu1 1/1
alu1 2/2

SHLD mem, reg, imm 1_1x_10100100_xxx_xxx M

alu1 1/1
ld 1/1
alu1 2/2
st 2/2/3

SHLD reg, reg, CL 1_0x_10100101_xxx_xxx F alu1 1/1
alu1 2/2

SHLD mem, reg, CL 1_1x_10100101_xxx_xxx M

alu1 1/1
ld 1/1
alu1 2/2
st 2/2/3

SHR reg, 1 0_0x_1101000x_101_xxx F alu1 1/1

SHR mem, 1 0_1x_1101000x_101_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHR reg, mem 0_0x_1100000x_101_xxx F alu1 1/1

SHR mem, imm 0_1x_1100000x_101_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHR reg, CL 0_0x_1101001x_101_xxx F alu1 1/1

SHR mem, CL 0_1x_1101001x_101_xxx F
ld 1/1
alu1 1/2
st 1/1/3

SHRD reg, reg, imm 1_0x_10101100_xxx_xxx F alu1 1/1
alu1 2/2

Table 2-1.   Integer Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcode

Execution 
Unit Timing
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SHRD mem, reg, imm 1_1x_10101100_xxx_xxx M

alu1 1/1
ld 1/1
alu1 2/2
st 2/2/3

SHRD reg, reg, CL 1_0x_10101101_xxx_xxx F
alu1 1/1
alu1 2/2

SHRD mem, reg, CL 1_1x_10101101_xxx_xxx M

alu1 1/1
ld 1/1
alu1 2/2
st 2/2/3

SUB reg, reg 0_0x_001010xx_xxx_xxx F alu 1/1

SUB reg, mem 0_1x_0010101x_xxx_xxx F ld 1/1
alu 1/2

SUB mem, reg 0_1x_0010100x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

SUB AL/AX/EAX, imm 0_xx_0010110x_xxx_xxx F alu 1/1

SUB reg, imm 0_0x_100000xx_101_xxx F alu  1/1

SUB mem, imm 0_1x_100000xx_101_xxx F
ld 1/1
alu 1/2
st 1/1/3

TEST reg, reg 0_0x_1000010x_xxx_xxx F alu  1/1

TEST mem, reg 0_1x_1000010x_xxx_xxx F ld 1/1
alu 1/2

TEST reg, imm 0_0x_1111011x_00x_xxx F alu  1/1

TEST AL/AX/EAX, imm 0_xx_1010100x_xxx_xxx F alu  1/1

TEST mem, imm 0_1x_1111011x_00x_xxx F ld 1/1
alu 1/2

XCHG EAX, reg (except EAX) 0_xx_10010xxx_xxx_xxx F
alu 1/1
alu 1/1
alu 2/2

XCHG reg, reg 0_0x_1000011x_xxx_xxx F
alu 1/1
alu 1/1
alu 2/2

XCHG mem, reg 0_1x_1000011x_xxx_xxx F
ld 1/1
st 1/1/2
alu 1/2

XOR reg, reg 0_0x_001100xx_xxx_xxx F alu 1/1

Table 2-1.   Integer Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcode

Execution 
Unit Timing
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Integer Dot Product Example

This example illustrates an optimal code sequence for an inte-
ger dot product operation that performs multiply/accumulates 
(MACs) at the rate of one every 3 cycles. In this example, the 
array size is a constant. The loop is unrolled to perform sepa-
rate MAC operations in parallel for even and odd elements. 
The final sum is generated outside the loop (as well as the final 
iteration for odd-sized arrays).

mac_loop:
MOV EAX, [ESI][ECX*4] ;load A(i)
MOV EBX, [ESI][ECX*4]+4 ;load A(i+1)
IMUL EAX, [EDI][ECX*4] ;A(i) * B(i)
IMUL EBX, [EDI][ECX*4]+4 ;A(i+1) * B(i+1)
ADD ECX, 2 ;increment index
ADD EDX, EAX ;even sum
ADD EBP, EBX ;odd sum
CMP ECX, EVEN_ARRAY_SIZE ;loop control
JL mac_loop ;jump

;do final MAC here for odd-sized arrays

ADD  EDX, EBP           ;final sum

Table 2-2 shows the timing of internal operations from dis-
patch to retire of each ROP for nearly two iterations of this 
loop. All memory accesses are assumed to hit in the cache. 
EVEN_ARRAY_SIZE is set to 20.

XOR reg, mem 0_1x_0011001x_xxx_xxx F ld 1/1
alu 1/2

XOR mem, reg 0_1x_0011000x_xxx_xxx F
ld 1/1
alu 1/2
st 1/1/3

XOR AL/AX/EAX, imm 0_xx_0011010x_xxx_xxx F alu 1/1

XOR reg, imm 0_0x_100000xx_110_xxx F alu  1/1

XOR mem, imm 0_1x_100000xx_110_xxx F
ld 1/1
alu 1/2
st 1/1/3

Table 2-1.   Integer Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcode

Execution 
Unit Timing



56 Code Optimization for the AMD-K5 Processor

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Table 2-2.   Integer Dot Product Internal Operations Timing

Instruction
Cycle

1 2 3 4 5 6 7 8 9 10 11 12 13 14

MOV EAX,[ESI][ECX*4] L > - - - !

MOV EBX,[ESI][ECX*4]+4 L > - - - !

IMUL EAX,[EDI][ECX*4]
L > - - !

- M M M M > !

IMUL EBX,[EDI][ECX*4]+4
L > - - - !

- M M M M > !

ADD ECX,2 A > - - - !

ADD EDX,EAX - - - A > !

ADD EBP,EBX - - - A > !

CMP ECX,20 - - - A > !

JL LOOP - - - - B > !

MOV EAX,[ESI][ECX*4] L > - - - !

MOV EBX,[ESI][ECX*4]+4 L > - - - !

IMUL EAX,[EDI][ECX*4]
L > - - !

- M M M M > !

IMUL EAX,[EDI][ECX*4]+4
L > - - - !

- M M M M >
Notes:

L— load execute
M— multiply execute
A— ALU execute
B— branch execute
>— result
!— retire (update real state)
- — preceding execute: waiting in the reservation station
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Floating-Point Instructions

Floating-point ROPs are always dispatched in pairs to the FPU 
reservation station. The first ROP conveys the lower halves of 
the A and B operands, and it always has the fpfill ROP type. 
The second ROP conveys the upper halves of the operands, as 
well as the numeric opcode. Data from both ROPs is merged in 
the reservation station and must be converted into an internal 
floating-point format before it can be issued to the add pipe 
(fadd), multiply pipe (fmul), or detect pipe (fmv). It takes one 
cycle to perform the conversion, and this delay is incurred 
whenever the source of the data is the register file or one of 
the other functional units (e.g., load/store, ALU). If data is 
being forwarded from the FPU itself, however, no format con-
version is required and operands are fast-forwarded from the 
back end of a pipe to the front of any other pipe without the 
one-cycle delay.

The add/subtract/reverse FPU latencies assume that cancella-
tion does not occur in the adder/subtractor. If cancellation 
does occur, an extra cycle is required to normalize the result. 

Table 2-3 shows the execution-unit usage for each floating-
point instruction, along with relative cycle numbers for dis-
patch and execution of the associated ROPs for the instruction. 

Table 2-3.   Floating-Point Instructions

Instruction Mnemonic Opcode Format Fastpath or 
Microcoded

Execution 
Unit Timing

FABS 0_0x_11011001_100_xxx F fpfill 1/2/4
fmv 1/2/4

FADD ST, ST(i) 0_0x_11011000_000_xxx F fpfill 1/2/5
fadd 1/2/5

FADD ST(i), ST 0_0x_11011000_000_xxx F fpfill 1/2/5
fadd 1/2/5

FADD real_32 0_1x_11011000_000_xxx F
ld 1/1
fpfill 1/3/6
fadd 1/3/6

FADD real_64 0_1x_11011100_000_xxx M

ld 1/1
ld 1/2
fpfill 1/4/7
fadd 1/4/7
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FADDP ST(i), ST 0_0x_11011110_000_xxx F fpfill 1/2/5
fadd 1/2/5

FCHS 0_0x_11011001_100_xxx F fpfill 1/2/4
fchs 1/2/4

FCOM ST(i) 0_0x_11011x00_010_xxx F fpfill 1/2/4
fcmpst 1/2/4

FCOM real_32 0_1x_11011000_010_xxx F
ld 1/1
fpfill 1/3/5
fmv 1/3/5

FCOM real_64 0_1x_11011100_010_xxx M

ld 1/1
ld 1/2
fpfill 1/4/6
fadd 1/4/6

FCOMP ST(i) 0_0x_11011x00_011_xxx F
fpfill 1/2/4
fmv 1/2/4
alu 1/1

FCOMP real_32 0_1x_11011000_011_xxx F
ld 1/1
fpfill 1/3/5
fmv 1/3/5

FCOMP real_64 0_1x_11011100_011_xxx M

ld 1/1
ld 1/2
fpfill 1/4/6
fadd 1/4/6

FCOMPP 0_0x_11011110_011_xxx F
fpfill 1/2/4
fmv 1/2/4
nop 1/1/2

FDECSTP 0_0x_11011001_110_xxx M alu 1/1/2
alu 1/1/2

FIADD int_16 0_1x_11011110_000_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

FIADD int_32 0_1x_11011010_000_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

Table 2-3.   Floating-Point Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcoded

Execution 
Unit Timing
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FICOM int_16 0_1x_11011110_010_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/9
fmv 2/7/9

FICOM int_32 0_1x_11011010_010_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/9
fmv 2/7/9

FICOMP int_16 0_1x_11011110_011_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/9
fmv 2/7/9

FICOMP int_32 0_1x_11011010_011_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/9
fmv 2/7/9

FILD int_16 0_1x_11011111_000_xxx F
ld 1/1
fpfill 1/3/7
fadd 1/3/7

FILD int_32 0_1x_11011011_000_xxx F
ld 1/1
fpfill 1/3/7
fadd 1/3/7

FILD int_64 0_1x_11011111_101_xxx M

ld 1/1
ld 1/2
fpfill 1/4/8
fadd 1/4/8

FIMUL int_16 0_1x_11011110_001_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/11
fmul 2/7/11

FIMUL int_32 0_1x_11011010_001_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/11
fmul 2/7/11

Table 2-3.   Floating-Point Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcoded

Execution 
Unit Timing
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FIST int_16 0_1x_11011111_010_xxx M

ld 1/1
fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FIST int_32 0_1x_11011011_010_xxx M

ld 1/1
fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FISTP int_16 0_1x_11011111_011_xxx M

ld 1/1
fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FISTP int_32 0_1x_11011011_011_xxx M

ld 1/1
fpfill 1/2/5
fadd 1/2/5
st 1/5/6

FISTP int_64 0_1x_11011111_111_xxx M

ld 1/1
ld 1/2
fpfill 1/2/5
fadd 1/2/5
st 2/3/6
st 2/4/7

FISUB int_16 0_1x_11011110_100_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

FISUB int_32 0_1x_11011010_100_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

FISUBR int_16 0_1x_11011110_101_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

Table 2-3.   Floating-Point Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcoded

Execution 
Unit Timing
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FISUBR int_32 0_1x_11011010_101_xxx M

ld 1/1
fpfill 1/3/7
fadd 1/3/7
fpfill 2/7/10
fadd 2/7/10

FLD real_32 0_1x_11011001_000_xxx F
ld 1/1
fpfill 1/3/5
fmv 1/3/5

FLD real_64 0_1x_11011101_000_xxx M

ld 1/1
ld 1/2
fpfill 1/4/6
fmv 1/4/6

FLD real_80 0_1x_11011011_101_xxx M

ld 1/1
ld 1/2
fpfill 1/6/8
fmv 1/6/8

FLD ST(i) 0_0x_11011001_000_xxx F
fpfill 1/2/4
fmv 1/2/4
nop 1/1

FMUL ST, ST(i) 0_0x_11011000_001_xxx F fpfill 1/2/8
fmul 1/2/8

FMUL ST(i), ST 0_0x_11011100_001_xxx F fpfill 1/2/8
fmul 1/2/8

FMUL real_32 0_1x_11011000_001_xxx F
ld 1/1
fpfill 1/3/7
fmul 1/3/7

FMUL real_64 0_1x_11011100_001_xxx M

ld 1/1
ld 1/2
fpfill 1/4/10
fmul 1/4/10

FMULP ST, ST(i) 0_0x_11011110_001_xxx F fpfill 1/2/8
fmul 1/2/8

FMULP ST(i), ST 0_0x_11011110_001_xxx F fpfill 1/2/8
fmul 1/2/8

FNOP 0_0x_11011001_010_xxx F alu 1/1/2
alu 1/1/2

FRNDINT 0_0x_11011001_111_xxx F fpfill 1/2/9
fadd 1/2/9

Table 2-3.   Floating-Point Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcoded

Execution 
Unit Timing
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FSCALE 0_0x_11011001_111_xxx F fpfill 1/2/8
fadd 1/2/8

FST real_32 0_1x_11011001_010_xxx M

ld 1/1
fpfill 1/2/4
fmv 1/2/4
st 1/2/5

FST ST(i) 0_0x_11011101_010_xxx F
fpfill 1/2/4
fmv 1/2/4

FSTP real_32 0_1x_11011001_011_xxx M

ld 1/1
fpfill 1/2/4
fmv 1/2/4
st 1/2/5

FSTP real_64 0_1x_11011101_011_xxx M

ld 1/1
ld 1/2
fpfill 1/2/4
fmv 1/2/4
st 2/3/5
st 2/4/6

FSTP real_80 0_1x_11011011_111_xxx M

ld 1/1
ld 1/2
fpfill 1/2/4
fmv 1/2/4
st 2/3/5
st 2/4/6

FSTP ST(i) 0_0x_11011x01_011_xxx F fpfill 1/2/4
fmv 1/2/4

FSUB ST, ST(i) 0_0x_11011000_100_xxx F fpfill 1/2/5
fadd 1/2/5

FSUB ST(i), ST 0_0x_11011100_100_xxx F fpfill 1/2/5
fadd 1/2/5

FSUB real_32 0_1x_11011000_100_xxx F
ld 1/1
fpfill 1/3/6
fadd 1/3/6

FSUB real_64 0_1x_11011100_100_xxx M

ld 1/1
ld 1/2
fpfill 1/4/7
fadd 1/4/7

FSUBP ST(i), ST 0_0x_11011110_100_xxx F fpfill 1/2/5
fadd 1/2/5

Table 2-3.   Floating-Point Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcoded

Execution 
Unit Timing
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FSUBR ST, ST(i) 0_0x_11011000_101_xxx F fpfill 1/2/5
fadd 1/2/5

FSUBR ST(i), ST 0_0x_11011100_101_xxx F fpfill 1/2/5
fadd 1/2/5

FSUBR real_32 0_1x_11011000_101_xxx F
ld 1/1
fpfill 1/3/6
fadd 1/3/6

FSUBR real_64 0_1x_11011100_101_xxx M

ld 1/1
ld 1/2
fpfill 1/4/7
fadd 1/4/7

FSUBRP ST(i), ST 0_0x_11011110_101_xxx F fpfill 1/2/5
fadd 1/2/5

FTST 0_0x_11011001_100_xxx F fpfill 1/2/4
fmv 1/2/4

FUCOM ST(i) 0_0x_11011101_100_xxx F fpfill 1/2/4
fmv 1/2/4

FUCOMP ST(i) 0_0x_11011101_101_xxx F
fpfill 1/2/4
fmv 1/2/4
nop 1/1

FUCOMPP 0_0x_11011010_101_xxx F
fpfill 1/2/4
fmv 1/2/4
nop 1/1

FWAIT 0_xx_10011011_xxx_xxx F alu 1/1

FXAM 0_0x_11011001_100_xxx F fpfill 1/2/4
fmv 1/2/4

FXCH ST(i) 0_0x_11011001_001_xxx F brn 1/1

FXTRACT 0_0x_11011001_110_xxx M

fpfill 1/2/4
fmv 1/2/4
fpfill 2/3/11
fadd 2/3/11
fpfill 3/4/6
fmv 3/4/6

Table 2-3.   Floating-Point Instructions  (continued)

Instruction Mnemonic Opcode Format Fastpath or 
Microcoded

Execution 
Unit Timing
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3
AMD-K5 Processor
Initialization

The internal state of the AMD-K5 processor can be initialized 
to known values via either the RESET or INIT signal. RESET 
takes effect immediately, asynchronously to whatever the pro-
cessor may be doing. INIT is recognized only at the next 
instruction boundary after assertion. RESET provides a com-
plete initialization, whereas INIT provides only a subset of 
this. Specifically, INIT does not affect the numeric coprocessor 
state or the cache contents. The initialized internal state is 
described in the following paragraphs. Except where explicitly 
noted, the resulting state is the same for both RESET and 
INIT.

General Registers

All general registers except EAX and EDX are cleared. EDX is 
loaded with the processor ID value. This is the value returned 
by issuing the CPUID instruction with a 1 in EAX (see 
“CPUID” on page 29). EAX is normally cleared, although if 
BIST is run along with reset and an error is detected, EAX will 
be loaded with a BIST error code.
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Segment Registers

The selector portion of all segment registers is cleared. The 
access rights and attribute fields are set up as shown in Table 
3-1. 

The limit fields are set to FFFFh. For CS, the base address is 
set to FFFF_0000h; for all others the base address is 0. Note 
that IDTR and GDTR consist of the just base and limit values, 
which are initialized to 0 and FFFFh, respectively.

EIP and EFLAGS

All bits of EFLAGS are cleared, with the exception of bit 1, 
which is hardwired to a 1. EIP is set to 0000_FFF0h.

Control and Debug Registers

On RESET, CR0 is initialized to 0600_0010h; the NW and CD 
bits are set to disable the caches. On INIT, the NW and CD bits 
retain their prior state. Note that the ET bit is always set. CR2, 
CR3, and CR4 are cleared. Debug registers 0–3 are cleared. 
DR6 is set to FFFF_0FF0h, and DR7 is set to 0000_0400h (bit 
10 is hardwired to a 1).

Table 3-1.   Segment Register Attribute Fields Initial Values

Attribute Field Value Description

G 0 Byte granularity

D/B 0 16-bit

P 1 Present

DPL 0 Privilege level

S 1 Application segment (except LDTR)

Type 2 Data, read/write
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Model-Specific Registers

The HWCR (Hardware Configuration Register) is cleared. On 
RESET, the TSC (Time Stamp Counter) is cleared, although it 
starts incrementing some clocks before the first instruction is 
fetched. INIT does not affect the TSC.

Caches and TLB

All TLB entries are invalidated; all cache Tag Valid bits are 
cleared on RESET. All other cache contents are undefined. On 
INIT, the Tag Valid bits, as well as all other cache contents, 
retain their prior state.

Floating-Point Unit

The state of the FPU is initialized by RESET only; it is unaf-
fected by INIT. On RESET, the FP instruction address, data 
address, opcode, Status Word, and Control Word are all 
cleared (note that FP Control Word bit 6 is hardwired to 1). 
The FP Tag Word is set to 5555h. All entries in the FP stack are 
initialized to 0.
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4
AMD-K5 Processor Test and 
Debug

The AMD-K5 processor has the following modes in which pro-
cessor and system operation can be tested or debugged: 

■ Hardware Configuration Register (HWCR)—The HWCR is a 
model-specific register that contains configuration bits that 
enable cache, branch tracing, debug, and clock control 
functions. 

■ Built-In Self-Test (BIST)—Both normal and test access port 
(TAP) BIST.

■ Output-Float Test—A test mode that causes the AMD-K5 
processor to float all of its output and bidirectional signals. 

■ Cache and TLB Testing—The Array Access Register (AAR) 
supports writes and reads to any location in the tag and 
data arrays of the processor’s on-chip caches and TLBs. 

■ Debug Registers—Standard 486 debug functions, with an I/O-
breakpoint extension. 

■ Branch Tracing—A pair of special bus cycles can be driven 
immediately after taken branches to specify information 
about the branch instruction and its target. The Hardware 
Configuration Register (HWCR) provides support for this 
and other debug functions. 

■ Functional Redundancy Checking—Support for real-time 
testing that uses two processors in a master-checker 
relationship. 
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■ Test Access Port (TAP) Boundary-Scan Testing—The JTAG 
test access functions defined by the IEEE Standard Test 
Access Port and Boundary-Scan Architecture (IEEE 1149.1-
1990) specification.

■ Hardware Debug Tool (HDT)—The hardware debug tool 
(HDT), sometimes referred to as the debug port or Probe 
mode, is a collection of signals, registers, and processor 
microcode that is enabled when external debug logic drives 
R/S Low or loads the AMD-K5 processor’s Test Access Port 
(TAP) instruction register with the USEHDT instruction. 

The test-related signals are described in Chapter 5 of the 
AMD-K5 Processor Technical Reference Manual. The signals 
include the following:

■ FLUSH

■ FRCMC

■ IERR

■ INIT

■ PRDY

■ R/S

■ RESET

■ TCK

■ TDI 

■ TDO

■ TMS

■ TRST

The sections that follow provide details on each of the test and 
debug features. 
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Hardware Configuration Register (HWCR)

The Hardware Configuration Register (HWCR) is a model-
specific register (MSR) that contains configuration bits that 
enable cache, branch tracing, debug, and clock control func-
tions. The WRMSR and RDMSR instructions access the HWCR 
when the ECX register contains the value 83h, as described on 
page 34. Figure 4-1 and Table 4-1 show the format and fields of 
the HWCR.

Figure 4-1.   Hardware Configuration Register (HWCR)
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Table 4-1.   Hardware Configuration Register (HWCR) Fields

Bit Mnemonic Description Function

31–8 —  — reserved

7 DDC Disable Data Cache
Disables data cache.

0 = enabled, 1 = disabled.

6 DIC Disable Instruction Cache
Disables instruction cache.

0 = enabled, 1 = disabled.

5 DBP Disable Branch Prediction
Disables branch prediction.

0 = enabled, 1 = disabled.

4 WA Write Allocate Enable
Enables write allocate.

0 = disabled, 1 = enabled

3–1 DC Debug Control

Debug control bits:

000 Off (disable HWCR debug control). 

001 Enable branch-tracing messages. See “Branch 
Tracing” on page 85. 

010 reserved

011 reserved

100 reserved

101 reserved

110 reserved

111 reserved

0 DSPC Disable Stopping 
Processor Clocks

Disables stopping of internal processor clocks in the 
Halt and Stop Grant states. 

0 = enabled, 1 = disabled.
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Built-In Self-Test (BIST)

The processor supports the following types of built-in self-test:

■ Normal BIST—A built-in self-test mode typically used to 
test system functions after RESET

■ Test Access Port (TAP) BIST—A self-test mode started by the 
TAP instruction, RUNBIST

All internal arrays except the TLB are tested in parallel by 
hardware. The TLB is tested by microcode. Unlike the Pentium 
processor, the AMD-K5 processor does not report parity errors 
on IERR for every cache or TLB access. Instead, the AMD-K5 
processor fully tests its caches during the BIST. EADS should 
not be asserted during a BIST. The processor accesses the phys-
ical tag array during BISTs, and these accesses can conflict 
with inquire cycles. 

Normal BIST

The normal BIST is invoked if INIT is asserted at the falling 
edge of RESET. The BIST runs tests on the internal hardware 
that exercise the following resources:

■ Instruction cache: 

• Linear tag directory

• Instruction array

• Physical tag directory

■ Data cache: 

• Linear tag directory

• Data array

• Physical tag directory

■ Entry-point and instruction-decode PLAs

■ Microcode ROM

■ TLB

The BIST runs a linear feedback shift register (LFSR) signa-
ture test on the microcode ROM in parallel with a March C test 
on the instruction cache, data cache, and physical tags. This is 
followed by the March C test on the TLB arrays and then an 
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LFSR signature test on the PLA, in that order. Upon comple-
tion of the PLA test, the processor transfers the test result 
from an internal Hardware Debug Test (HDT) data register to 
the EAX register for external access, resets the internal micro-
code, and begins normal code fetching. 

The result of the BIST can be accessed by reading the lower 9 
bits of the EAX register. If the EAX register value is 
0000_0000h, the test completed successfully. If the value is not 
zero, the non-zero bits indicate where the failure occurred, as 
shown in Table 4-2. The processor continues with its normal 
boot process after the BIST completes, whether the BIST 
passed or failed. 

Test Access Port (TAP) BIST

The TAP BIST performs all of the functions of the normal 
BIST, up to and including the PLA signature test, in the exact 
manner as the normal BIST. However, after the PLA test, the 
test result is not transferred to the EAX register. 

The TAP BIST is started by loading and executing the RUN-
BIST instruction in the test access port, as described in 
“Boundary Scan Architecture Support” on page 87. When the 
RUNBIST instruction is executed, the processor enters into a 
reset mode that is identical to that entered when the RESET 

Table 4-2.   BIST Error Bit Definition in EAX Register

Bit Number
Bit Value 

 0 1

31–9 No Error Always 0

8 No Error Data path

7 No Error Instruction-cache instructions

6 No Error Instruction-cache linear tags

5 No Error Data-cache linear tags

4 No Error PLA

3 No Error Microcode ROM

2 No Error Data-cache data

1 No Error Instruction cache physical tags

0 No Error Data-cache physical tags
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signal is asserted. Upon completion of the TAP BIST, the result 
remains in the BIST result register for shifting out through the 
TDO signal. The TRST signal must be asserted or the TAP 
instruction must be changed in order to exit TAP BIST and 
return to normal operation. 

Output-Float Test

The Output-Float Test mode is entered if FLUSH is asserted 
before the falling edge of RESET. This causes the processor to 
place all of its output and bidirectional signals in the high-
impedance state. In this isolated state, system board traces and 
connections can be tested for integrity and driveability. The 
Output-Float Test mode can only be exited by asserting RESET 
again. 

On the AMD-K5 and Pentium processors, FLUSH is an edge-
triggered interrupt. On the 486 processor, however, the signal 
is a level-sensitive input. 

Cache and TLB Testing

Cache and TLB testing is often done by the BIOS or operating 
system during power-up. These arrays can be tested using the 
Array Access Register (AAR). The following tests can be
performed:

■ Data Cache—8-Kbyte, 4-way, set associative 

• Data array

• Linear-tag array

• Physical-tag array

■ Instruction Cache—16-Kbyte, 4-way, set associative 

• Instruction array

• Linear-tag array

• Physical-tag array

• Valid-bit array

• Branch-prediction bit array
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■ 4-Kbyte TLB—128-entry, 4-way, set associative 

• Linear-tag array

• Page array

■ 4-Mbyte TLB—4-entry, fully associative 

• Linear-tag array

• Page array

Note: For more information on cache arrays, see Appendix A.

Array Access Register (AAR)

The 64-bit Array Access Register (AAR) is a model-specific 
register (MSR) that contains a 32-bit array pointer, which iden-
tifies the array location to be tested, and 32 bits of array test 
data to be read or written. The WRMSR and RDMSR instruc-
tions access the AAR when the ECX register contains the value 
82h, as described on page 34. Figure 4-2 shows the format of 
the AAR. 

Figure 4-2.   Array Access Register (AAR)

To read or write an array location, perform the following steps:

1. ECX—Enter 82h into ECX to access the 64-bit AAR. 

2. EDX—Enter a 32-bit array pointer into EDX, as shown in 
Figures 4-3 through 4-8 (top). 

3. EAX—Read or write 32 bits of array test data to or from 
EAX, as shown in Figures 4-3 through 4-8 (bottom). 

MSR
82h

031

031

Array Pointer
(Contents of EDX)

Array Data
(Contents of EAX)



Cache and TLB Testing 77

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

Array Pointer

The array pointers entered in EDX (Figures 4-3 through 4-8, 
top) specify particular array locations. For example, in the 
data- and instruction-cache arrays, the way (or column) and set 
(or index) in the array pointer specifies a cache line in the 
4-way, set-associative array. The array pointers for data-cache 
data and instruction-cache instructions also specify a dword 
location within that cache line. In the data cache, this dword is 
32 bits of data, in the instruction cache, this dword is two 
instruction bytes plus their associated pre-decode bits. For the 
4-Kbyte TLB, the way and set specify one of the 128 TLB 
entries. In 4-Mbyte TLB, one of only four entries is specified. 

Bits 7–0 of every array pointer encode the array ID, which iden-
tifies the array to be accessed, as shown in Table 4-3. To sim-
plify multiple accesses to an array, the contents of EDX are 
retained after the RDMSR instruction executes (EDX is nor-
mally cleared after a RDMSR instruction). 

Table 4-3.   Array IDs in Array Pointers

Array Pointer 
Bits 7–0 Accessed Array

E0h Data Cache: Data

E1h Data Cache: Linear Tag

ECh Data Cache: Physical Tag

E4h Instruction Cache: Instructions

E5h Instruction Cache: Linear Tag

EDh Instruction Cache: Physical Tag

E6h Instruction Cache: Valid Bits

E7h Instruction Cache: Branch-Prediction Bits

E8h 4-Kbyte TLB: Page

E9h 4-Kbyte TLB: Linear Tag

EAh 4-Mbyte TLB: Page

EBh 4-Mbyte TLB: Linear Tag
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Array Test Data

EAX specifies the test data to be read or written with the 
RDMSR or WRMSR instruction (see Figures 4-3 through 4-8). 
For example, in Figure 4-3 (top) the array pointer in EDX spec-
ifies a way and set within the data-cache linear tag array (E1h 
in bits 7–0 of the array pointer) or the physical tag array (ECh 
in bits 7–0 of the array pointer). If the linear tag array (E1h) is 
accessed, the data read or written includes the tag and the sta-
tus bits. The details of the valid fields in EAX are shown in 
Appendix A. 

Figure 4-3.   Test Formats: Data-Cache Tags 

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID

(E1h, ECh)Way 0 0 0 0 0 0 0 0 Set 0 0 0 0 0

EAX: Test Data

(E1h) Linear Tag

(ECh) Physical Tag

0

0 0 0 0 Valid Bits

0

0 0 0 0 0 0 0 0 0 Valid Bits

8 712131819

31 28 27

31 23 22
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Figure 4-4.   Test Formats: Data-Cache Data 

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID
(E0h)Way 0 0 0 0 0 0 0 0 0 Set 0 0

EAX: Test Data

(E0h) Data

0

Valid Bits

71819

31

9 8101213

Dword
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Figure 4-5.   Test Formats: Instruction-Cache Tags 

EDX: Array Pointer

(E7h) Branch-Prediction Bits

8 7 01112192031 30 29 28 27

0 0
Array ID

(E5h, EDh, E6h, E7h)Way 0 0 0 0 0 0 0 0 Set 0 0 0 0

EAX: Test Data

(E5h) Linear Tag

(EDh) Physical Tag

(E6h) Valid Bits

0192031

0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

031

0 0 0 0 0 0 0 0 0 0 0 Valid Bits

2021

031

0 0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

1819

031

0 0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

1819
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Figure 4-6.   Test Formats: Instruction-Cache Instructions 

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID
(E4h)Way 0 0 0 0 0 0 0 0 Set 0

EAX: Test Data

(E4h) Instruction Bytes

720 19 9 81112

Opcode 
Bytes

0

0 0 0 0 0 0 Valid Bits

31 26 25
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Figure 4-7.   Test Formats: 4-Kbyte TLB 

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID

(E8h, E9h)Way 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Set

EAX: Test Data

(E8h) 4-Kbyte Page and Status

(E9h) 4-Kbyte Linear Tag

0 0 0 0 0 0 0 0 0 0 Valid Bits

0

0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

8 71213

31

02131 22

1920
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Figure 4-8.   Test Formats: 4-Mbyte TLB 

EDX: Array Pointer

031 30 29 28 27

0 0
Array ID

(EAh, EBh)Entry 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EAX: Test Data

(EAh) 4-Mbyte Page and Status

(EBh) 4-Mbyte Linear Tag

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Valid Bits

8 7

31

0111231

1415
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Debug Registers

The processor implements the standard debug functions and 
registers—DR7–DR6 and DR3–DR0 (often called DR7–DR0)—
that are available on the 486 processor, plus an I/O breakpoint 
extension. 

Standard Debug Functions

The debug functions make the processor’s state visible to 
debug software through four debug registers (DR3–DR0) that 
are accessed by MOV instructions. Accesses to memory 
addresses can be set as breakpoints in the instruction flow by 
invoking one of two debug exceptions (interrupt vectors 1 or 3) 
during instruction or data accesses to the addresses. The debug 
functions eliminate the need to embed breakpoints in code and 
allow debugging of ROM as well as RAM. 

For details on the standard 486 debug functions and registers, 
see the AMD documentation on the Am486® processor or other 
commercial x86 literature. 

I/O Breakpoint Extension

The processor supports an I/O breakpoint extension for break-
points on I/O reads and writes. This function is enabled by set-
ting bit 3 of CR4, as described in “Control Register 4 (CR4) 
Extensions” on page 2. When enabled, the I/O breakpoint func-
tion is invoked by the following:

■ Entering the I/O port number as a breakpoint address (zero-
extended to 32 bits) in one of the breakpoint registers, 
DR3–DR0

■ Entering the bit pattern, 10b, in the corresponding 2-bit 
R/W field in DR7

All data breakpoints on the AMD-K5 processor are precise, 
including those encountered in repeated string operations, 
which trap after completing the iteration on which the break-
point match occurs. 
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Enabled breakpoints slow the processor somewhat. When a 
data breakpoint is enabled, the processor disables its dual-
issue load/store operations and performs only single-issue load/
store operations. When an instruction breakpoint is enabled, 
instruction issue is completely serialized. 

Debug Compatibility with Pentium Processor

The differences in debug functions between the AMD-K5 and 
Pentium processors are described in Appendix A of the 
AMD-K5 Processor Technical Reference Manual, order# 18524. 

Branch Tracing

Branch tracing is enabled by writing bits 3–1 with 001b and set-
ting bit 5 to 1 (disabling branch prediction) in the Hardware 
Configuration Register (HWCR), as described on page 71. 
When thus enabled, the processor drives two branch-trace mes-
sage special bus cycles immediately after each taken branch 
instruction is executed. Both special bus cycles have a BE7–
BE0 encoding of DFh (1101_1111b). The first special bus cycle 
identifies the branch source, the second identifies the branch 
target. The contents of the address and data bus during these 
special bus cycles are shown in Table 4-4. 

The branch-trace message special bus cycles are different for 
the AMD-K5 and Pentium processors, although their BE7–BE0 
encodings are the same. 
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Functional-Redundancy Checking

When FRCMC is asserted at RESET, the processor enters 
Functional-Redundancy Checking mode, as the checker, and 
reports checking errors on the IERR output. If FRCMC is 
negated at RESET, the processor operates normally, although 
it also behaves as the master in a functional-redundancy check-
ing arrangement with a checker. 

In the Functional-Redundancy Checking mode, two processors 
have their signals tied together. One processor (the master) 
operates normally. The other processor (the checker) has its 
output and bidirectional signals (except for TDO and IERR) 
floated to detect the state of the master’s signals. The master 
controls instruction fetching and the checker mimics its behav-
ior by sampling the fetched instructions as they appear on the 
bus. Both processors execute the instructions in lock step. The 
checker compares the state of the master’s output and bidirec-
tional signals with the state that the checker itself would have 
driven for the same instruction stream. 

Table 4-4.   Branch-Trace Message Special Bus Cycle Fields

Signals First Special Bus Cycle Second Special Bus Cycle

A31 0 = first special bus cycle (source) 1 = second special bus cycle (target)

A30–A29 not valid

Operating Mode of Target:

11 = Virtual-8086 Mode

10 = Protected Mode

01 = not valid

00 = Real Mode

A28 not valid

Default Operand Size of Target Segment:

1 = 32-bit

0 = 16-bit

A27–A20 0 0

A19–A4 Code Segment (CS) selector of Branch 
Source. Code Segment (CS) selector of Branch Target. 

A3 0 0

D31–D0 EIP of Branch Source. EIP of Branch Target. 
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Errors detected by the checker are reported on the IERR out-
put of the checker. If a mismatch occurs on such a comparison, 
the checker asserts IERR for one clock, two clocks after the 
detection of the error. Both the master and the checker con-
tinue running the checking program after an error occurs. No 
action other than the assertion of IERR is taken by the proces-
sor. On the AMD-K5 processor, the IERR output is reserved 
solely for functional-redundancy checking. No other errors are 
reported on that output. 

Functional-redundancy checking is typically implemented on 
single-processor, fault-monitoring systems (which actually 
have two processors). The master processor runs the opera-
tional programs and the checker processor is dedicated 
entirely to constant checking. In this arrangement, the test of 
accurate operation consists solely of reporting one or more 
errors. The particular type of error or the instruction causing 
an error is not reported. The arrangement works because the 
processor is entirely deterministic. Speculative prefetching, 
speculative execution, and cache replacement all occur in 
identical ways and at identical times on both processors if their 
signals are tied together so that they run the same program. 

The Functional-Redundancy Checking mode can only be 
exited by the assertion of RESET. Functional-redundancy 
checking cannot be performed in the Hardware Debug Tool 
(HDT) mode. The assertion of FRCMC is not recognized while 
PRDY is asserted. 

Boundary Scan Architecture Support

The AMD-K5 processor provides test features compatible with 
the Standard Test Access Port (TAP) and Boundary Scan Test 
Architecture as defined in the IEEE 1149.1-1990 JTAG Specifi-
cation. The subsections in this topic include:

■ Boundary Scan Test Functional Description

■ Boundary Scan Architecture

■ Registers

■ The Test Access Port (TAP) Controller

■ JTAG Register Organization
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■ JTAG Instructions

The external TAP interface consists of five pins:

■ TCK: The Test Clock input provides the clock for the JTAG 
test logic.

■ TMS: The Test Mode Select input enables TAP controller 
operations.

■ TDI: The Test Data Input provides serial input to registers.

■ TDO: The Test Data Output provides serial output from the 
registers; the signal is tri-stated except when in the Shift-
DR or Shift-IR controller states.

■ TRST: The TAP Controller Reset input initializes the TAP 
controller when asserted Low.

The internal JTAG logic contains the elements listed below:

■ The Test Access Port (TAP) Controller—Decodes the inputs 
on the Test Mode Select (TMS) line to control test opera-
tions. The TAP is a general-purpose port that provides 
access to the test support functions built into the AMD-K5 
processor.

■ Instruction Register—Accepts instructions from the Test 
Data Input (TDI) pin. The instruction codes select the spe-
cific test or debug operation to be performed or the test 
data register to be accessed.

■ Implemented Test Data Registers—Boundary Scan Regis-
ter, Device Identification Register, and Bypass Register. 
See “JTAG Register Organization” on page 91 for more 
information.

Note: See Table 4-8  for more information.

Boundary Scan Test Functional Description

The boundary scan testing uses a shift register, contained in a 
boundary scan cell, located between the core logic and the I/O 
buffers adjacent to each component pin. Signals at each input 
and output pin are controlled and observed using scan testing 
techniques. The boundary scan cells are interconnected to 
form a shift register chain. This register chain, called a Bound-
ary Scan Register (BSR), constructs a serial path surrounding 
the core logic. This enables test data to be shifted through the 
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boundary scan path. When the system enters the Boundary 
Scan Test mode, the BSR chain is directed by a test program to 
pass data along the shift register path. 

If all the components used to construct a circuit or PCB contain 
a boundary scan cell architecture, the resulting serial path can 
be used to perform component interconnect testing.

Boundary Scan Architecture

Boundary Scan architecture has four basic elements:

■ Test Access Port (TAP)

■ TAP Controller

■ Instruction Register (IR). See“Instruction Register” on 
page 90 for more information.

■ Test Data Registers. See “Registers” on page 90 for more 
information.

The Instruction and Test Data Registers have separate shift 
register access paths connected in parallel between the Test 
Data In (TDI) and Test Data Out (TDO) pins. Path selection 
and boundary scan cell operation is controlled by the TAP Con-
troller. The controller initializes at start-up, but the Test Reset 
(TRST) input can asynchronously reset the test logic, if 
required. 

All system integrated circuit (IC) I/O signals are shifted in and 
out through the serial Test Data In and Test Data Out (TDI/
TDO) path. The TAP Controller is enabled by the Test Mode 
Select (TMS) input. The Test Clock (TCK), obtained from a sys-
tem level bus or Automatic Test Equipment (ATE), supplies 
the timing signal for data transfer and system architecture 
operation.

The dedicated TCK input enables the serial test data path 
between components to be used independently of component-
specific system clocks. TCK also ensures that test data can be 
moved to or from a chip without changing the state of the on-
chip system logic. 

The TCK signal is driven by an independent 50% duty cycle 
clock (generated by the Automatic Test Equipment). If the 
TCK must be stopped (for example, if the ATE must retrieve 
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data from external memory and is unable to keep the clock 
running), it can be stopped at 0 or 1 indefinitely, without caus-
ing any change to the test logic state. 

To ensure race-free operation, changes on the TAP’s TMS 
input are clocked into the test logic. Changes on the TAP’s TDI 
input are clocked into the selected register (Instruction or Test 
Data Register) on the rising edge of TCK. The contents of the 
selected register are shifted out onto the TAP output (TDO) on 
the falling edge of TCK. 

Registers

Boundary scan architectural elements include an Instruction 
Register (IR) and a group of Test Data Registers (TDRs). These 
registers have separate shift-register-based serial access paths, 
connected in parallel between the TDI and TDO pins. 

The TDRs are internal registers used by the Boundary Scan 
Architecture to process the test data. Each Test Data Register 
is addressed by an instruction scanned into the Instruction 
Register. The AMD-K5 processor includes the following TDRs: 

■ Bypass Register (BR). See “Bypass Register” on page 92.

■ Boundary Scan Register (BSR). See “Boundary Scan Regis-
ter” on page 91.

■ Device Identification Register (DIR). See “Device Identifi-
cation Register” on page 91.

■ Built-In Self-Test Result Register (BISTRR). See
“RUNBIST” on page 95.

Instruction Register The 5-bit Instruction Register (IR) is a serial-in parallel-out 
register that includes five shift register-based cells for holding 
instruction data. The instruction determines which test to run, 
which data register to access, or both. When the TAP controller 
enters the Capture IR state, the processor loads the IDCODE 
instruction in the IR. Executing Shift IR starts instructions 
shifting into the instruction register on the rising edge of TCK. 
Executing Update-IR loads the instruction from the serial shift 
register to the parallel register.

The TAP controller is a synchronous, finite state machine that 
controls the test and debug logic sequence of operations. The 
TAP controller changes state in response to the rising edge of 



Boundary Scan Architecture Support 91

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

TCK and defaults to the test logic reset state at power-up. 
Reinitialization to the test logic reset state is accomplished by 
holding the TMS pin High for five TCK periods. 

JTAG Register Organization

All registers in the JTAG logic consist of the following two reg-
ister ranks: 

■ A shift register

■ A parallel output register fed by the shift register

Parallel input data is loaded into the shift register when the 
TAP controller exits the Capture state (Capture DR or Capture 
IR). The shift register then shifts data from TDI to TDO when 
in the Shift state (Shift DR or Shift IR). The output register 
holds the current data while new data is shifted into the shift 
register. The contents of the output register are updated when 
the TAP controller exits the Update state (Update DR or 
Update IR). The three registers described in this section are:

■ Boundary Scan Register

■ Device Identification Register

■ Bypass Register

Boundary Scan 
Register

The Boundary Scan Register (BSR) is a 261-bit shift register 
with cells connected to all input and output pins and contain-
ing cells for tri-state I/O control. This enables serial data to be 
loaded into or read from the processor boundary scan area.

Output cells determine the value of the signal driven on the 
corresponding pin. Input cells only capture data. The EXTEST 
and SAMPLE/PRELOAD instructions can operate the BSR.

Device Identification 
Register

The format of the Device Identification Register (DIR) is 
shown in Table 4-5. The fields include the following values:

■ Version Number—This is incremented by AMD manufactur-
ing for each major revision of silicon. 

■ Bond Option—The two bits of the bond option depend on 
how the part is bonded at the factory.

■ Part Number—This identifies the specific processor model. 
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Manufacturer—This is actually only 11 bits (11–1). The least-
significant bit, bit 0, is always set to 1, as specified by the IEEE 
standard.

■ Bypass Register

The Bypass Register, a 1-bit shift register, provides the short-
est path between TDI and TDO. When the component is not 
performing a test operation, this path is selected to allow trans-
fer of test data to and from other components on the board. 
The Bypass Register is also selected during the HIGHZ, ALL1, 
ALL0, and BYPASS tests and for any unused instruction codes.

Public Instructions

The processor supports all three IEEE-mandatory instructions 
(BYPASS, SAMPLE/PRELOAD, EXTEST), three IEEE-
optional instructions (IDCODE, HIGHZ, RUNBIST), and three 
instructions unique to the AMD-K5 processor (ALL1, ALL0, 
USEHDT). Table 4-6 shows the complete set of public TAP 
instructions supported by the processor. The processor also 
implements several private manufacturing test instructions. 

The IEEE standard describes the mandatory and optional 
instructions. The ALL1 and ALL0 instructions simply force all 
outputs and bidirectionals High or Low. The USEHDT instruc-
tion is described on page 112. Any instruction encodings not 
shown in Table 4-6 select the BYPASS instruction. 

Table 4-5.   Test Access Port (TAP) ID Code

Version
(Bits 31–28)

Bond Option
(Bit 27)

Unused
(Bits 26–24)

Part Number
(Bits 23–12)

Manufacturer
(Bits 11–1)

LSB
(Bit 0)

Xh Xb 000b

50Xh = Model 0
51Xh = Model 1
52Xh = Model 2
53Xh = Model 3

00000000001b 1b
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EXTEST The EXTEST instruction permits circuits outside the compo-
nent package to be tested. A common use of the EXTEST 
instruction is the testing of board interconnects. Boundary 
scan register cells at output pins are used to apply test stimuli, 
while those at input pins capture test results. Dependent on 
the value loaded into their control cell in the boundary scan 
register, the I/O pins are established as input or output. Inputs 
to the core logic retain the logic value set prior to execution of 
the EXTEST instruction. Upon exiting EXTEST, input pins are 
reconnected to the package pins.

SAMPLE/PRELOAD There are two functions performed by the SAMPLE/PRELOAD 
instruction, as follows:

■ Capturing an instantaneous picture of the normal operation 
of the device being tested. This function occurs if the 
instruction is executed while the TAP controller is in the 
Capture DR state and causes the Boundary Scan Register to 
sample the values present at the device pins.

■ Preloading data to the device pins to be driven to the board 
by the EXTEST instruction. This function occurs if the 
instruction is executed while the TAP controller is in the 
Update DR state and causes data to be preloaded to the 
device pins from the Boundary Scan Register.

Table 4-6.   Public TAP Instructions

Instruction Encoding Register Description

EXTEST 00000 BSR As defined by the IEEE standard

SAMPLE/ PRELOAD 00001 BSR As defined by the IEEE standard

IDCODE 00010 DIR As defined by the IEEE standard

HIGHZ 00011 BR As defined by the IEEE standard

ALL1 00100 BR Forces all outputs and bidirectionals High 

ALL0 00101 BR Forces all outputs and bidirectionals Low

USEHDT 00110 HDTR Accesses the Hardware Debug Tool (HDT)1 
See page 112

RUNBIST 00111 BISTRR As defined by the IEEE standard

BYPASS 11111 BR As defined by the IEEE standard

BYPASS undefined BR Undefined instruction encodings select the BYPASS 
instruction

Notes:
1. Documentation on the Hardware Debug Tool (HDT) is available from AMD under a nondisclosure agreement. 
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IDCODE The execution of the IDCODE instruction connects the device 
identification register between TDI and TDO. Upon such con-
nection, the device identification code can be shifted out of the 
register.

HIGHZ This instruction forces all output and bidirectional pins into a 
tri-state condition. When this instruction is selected, the 
bypass register is selected for shifting between TDI and TDO. 
A signal called HIZEXT is responsible for forcing the tri-state 
to occur. This signal is generated in the TAP block, underneath 
JTAG_BIST, and goes to the PAD_TOP block.

ALL1 This instruction forces all output and bidirectional pins to a 
High logic level.

The ALL1 instruction, like the HIGHZ instruction selects the 
bypass register for shifting between TDI and TDO. There is a 
signal called ALL1 that is responsible for forcing the pins to a 
High state. This signal is generated in the TAP block under-
neath JTAG_BIST and goes to the PAD_TOP block. In the 
PAD_TOP block, this signal goes to boundary scan cells called 
BSLCD_OUT. The DOUT pins of the BSLCD_OUT cells are 
forced High when ALL1 is High. The SELPDR signal selects 
the boundary scan cells as the source for driving the outputs, if 
the SELPDR signal is High. The SELPDR signal is also gener-
ated in the TAP block underneath JTAG_BIST and goes to the 
PAD_TOP block.

ALL0 This instruction forces all output and bidirectional pins to a 
Low logic level. 

The ALL0 instruction, like the HIGHZ instruction, selects the 
bypass register for shifting between TDI and TDO. There is a 
signal called ALL0 that is responsible for forcing the pins to a 
Low state. This signal is generated in the TAP block under-
neath JTAG_BIST and goes to the PAD_TOP block. In the 
PAD_TOP block, this signal goes to boundary scan cells called 
BSLCD_OUT. The DOUT pins of the BSLCD_OUT cells are 
forced Low when ALL0 is High. The SELPDR signal selects the 
boundary scan cells as the source for driving the outputs, if the 
SELPDR signal is High. The SELPDR signal is also generated 
in the TAP block underneath JTAG_BIST and goes to the 
PAD_TOP block.
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RUNBIST This version of BIST is similar to the normal BIST mode, except 
that it is started by shifting in a TAP instruction. This instruc-
tion should behave according to the rules of the IEEE 1149.1 
definition of RUNBIST.

When the RUNBIST instruction is updated into the instruction 
register, a signal from the TAP_RTL block called JTGBIST is 
asserted High. This signal goes to the PAD_TOP and TESTC-
TRL blocks. In PAD_TOP, this signal goes to the BRNBIST 
block and causes both INIT_SAMP and RUNBIST to be 
asserted. To the rest of the chip, it looks like a normal BIST 
operation is taking place. The JTGBIST signal also goes to the 
TESTCTRL block so that the BIST controller knows that the 
BIST operation was initiated from the TAP controller. This is 
necessary because the BIST results do not get transferred to 
the EAX register in this mode of operation. The JTAG_BIST 
block also asserts the RESET_TAP pin to the CLOCKS block 
for 15 system clock cycles, in order to fake an external reset.

The pattern that is shifted into the boundary scan ring, prior to 
the selection of the RUNBIST instruction, is driven at output 
and bidirectional cells during the duration of the instruction. 
The results of the execution of RUNBIST are saved in the BIST 
results register, which is 9 bits long and looks like the least sig-
nificant 9 bits in the EAX register. This register is selected for 
shifting between TDI and TDO and can be shifted out after the 
completion of BIST. Bit 0 (ICACHE data status) is shifted out 
first. The BIST results should be independent of signals 
received at non-clock input pins (except for RESET).

BYPASS The execution of the BYPASS instruction connects the bypass 
register between TDI and TDO, bypassing the test logic. 
Because of the pull-up resistor on the TDI input, the bypass 
register is selected if there is an open circuit in the board-level 
test data path following an instruction scan cycle. Any unused 
instruction bit patterns cause the bypass register to be 
selected for shifting between TDI and TDO.
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The control bits listed in Table 4-8  have the characteristics 
described in Table 4-7.

Table 4-7.   Control Bit Definitions

Bit Definition

144
Controls the direction of the Data bus (D63–D0). If the bit is set to 1, the 
bus acts as an input. If the bit is set to 0, the bus acts as an output.

213
Controls the direction of the Address bus (A31–A3) and Address Parity 
(AP). If the bit is set to 1, the bus acts as an input. If the bit is set to 0, the 
bus acts as an output.

257
Controls pins that can be tri-stated, but these pins never act as inputs. If 
the bit is set to 1, the pin is tri-stated. If the bit is set to 0, the pin acts as 
an output.

Table 4-8.   Boundary Scan Register Bit Definitions (Model 0)

Bit Pin Name Comments

0 DP7 Output Cell: Controlled by bit 144

1 DP7 Input Cell   

2 D63 Output Cell: Controlled by bit 144

3 D63 Input Cell   

4 D62 Output Cell: Controlled by bit 144

5 D62 Input Cell   

6 D61 Output Cell: Controlled by bit 144 

7 D61 Input Cell   

8 D60 Output Cell: Controlled by bit 144 

9 D60 Input Cell   

10 D59 Output Cell: Controlled by bit 144 

11 D59 Input Cell   

12 D58 Output Cell: Controlled by bit 144 

13 D58 Input Cell   

14 D57 Output Cell: Controlled by bit 144 

15 D57 Input Cell   

16 D56 Output Cell: Controlled by bit 144 

17 D56 Input Cell   

18 DP6 Output Cell: Controlled by bit 144 

19 DP6 Input Cell   

20 D55 Output Cell: Controlled by bit 144 
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21 D55 Input Cell   

22 D54 Output Cell: Controlled by bit 144 

23 D54 Input Cell   

24 D53 Output Cell: Controlled by bit 144 

25 D53 Input Cell   

26 D52 Output Cell: Controlled by bit 144 

27 D52 Input Cell   

28 D51 Output Cell: Controlled by bit 144 

29 D51 Input Cell   

30 D50 Output Cell: Controlled by bit 144 

31 D50 Input Cell   

32 D49 Output Cell: Controlled by bit 144 

33 D49 Input Cell   

34 D48 Output Cell: Controlled by bit 144 

35 D48 Input Cell   

36 DP5 Output Cell: Controlled by bit 144 

37 DP5 Input Cell   

38 D47 Output Cell: Controlled by bit 144 

39 D47 Input Cell   

40 D46 Output Cell: Controlled by bit 144 

41 D46 Input Cell   

42 D45 Output Cell: Controlled by bit 144 

43 D45 Input Cell   

44 D44 Output Cell: Controlled by bit 144 

45 D44 Input Cell   

46 D43 Output Cell: Controlled by bit 144 

47 D43 Input Cell   

48 D42 Output Cell: Controlled by bit 144 

49 D42 Input Cell   

50 D41 Output Cell: Controlled by bit 144 

51 D41 Input Cell   

52 D40 Output Cell: Controlled by bit 144 

53 D40 Input Cell   

54 DP4 Output Cell: Controlled by bit 144 

Table 4-8.   Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments
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55 DP4 Input Cell   

56 D39 Output Cell: Controlled by bit 144 

57 D39 Input Cell   

58 D38 Output Cell: Controlled by bit 144 

59 D38 Input Cell   

60 D37 Output Cell: Controlled by bit 144 

61 D37 Input Cell   

62 D36 Output Cell: Controlled by bit 144 

63 D36 Input Cell   

64 D35 Output Cell: Controlled by bit 144 

65 D35 Input Cell   

66 D34 Output Cell: Controlled by bit 144 

67 D34 Input Cell   

68 D33 Output Cell: Controlled by bit 144 

69 D33 Input Cell   

70 D32 Output Cell: Controlled by bit 144 

71 D32 Input Cell   

72 DP3 Output Cell: Controlled by bit 144 

73 DP3 Input Cell   

74 D31 Output Cell: Controlled by bit 144 

75 D31 Input Cell   

76 D30 Output Cell: Controlled by bit 144 

77 D30 Input Cell   

78 D29 Output Cell: Controlled by bit 144 

79 D29 Input Cell   

80 D28 Output Cell: Controlled by bit 144 

81 D28 Input Cell   

82 D27 Output Cell: Controlled by bit 144 

83 D27 Input Cell   

84 D26 Output Cell: Controlled by bit 144 

85 D26 Input Cell   

86 D25 Output Cell: Controlled by bit 144 

87 D25 Input Cell   

88 D24 Output Cell: Controlled by bit 144 

Table 4-8.   Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments
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89 D24 Input Cell   

90 DP2 Output Cell: Controlled by bit 144 

91 DP2 Input Cell   

92 D23 Output Cell: Controlled by bit 144 

93 D23 Input Cell   

94 D22 Output Cell: Controlled by bit 144 

95 D22 Input Cell   

96 D21 Output Cell: Controlled by bit 144 

97 D21 Input Cell   

98 D20 Output Cell: Controlled by bit 144 

99 D20 Input Cell   

100 D19 Output Cell: Controlled by bit 144 

101 D19 Input Cell   

102 D18 Output Cell: Controlled by bit 144 

103 D18 Input Cell   

104 D17  Output Cell: Controlled by bit 144 

105 D17  Input Cell   

106 D16  Output Cell: Controlled by bit 144 

107 D16  Input Cell   

108 DP1  Output Cell: Controlled by bit 144 

109 DP1  Input Cell   

110 D15  Output Cell: Controlled by bit 144 

111 D15  Input Cell   

112 D14  Output Cell: Controlled by bit 144 

113 D14  Input Cell   

114 D13  Output Cell: Controlled by bit 144 

115 D13  Input Cell   

116 D12  Output Cell: Controlled by bit 144 

117 D12  Input Cell   

118 D11  Output Cell: Controlled by bit 144 

119 D11  Input Cell   

120 D10  Output Cell: Controlled by bit 144 

121 D10  Input Cell   

122 D9  Output Cell: Controlled by bit 144 

Table 4-8.   Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments
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123 D9  Input Cell   

124 D8  Output Cell: Controlled by bit 144 

125 D8  Input Cell   

126 DP  Output Cell: Controlled by bit 144 

127 DP  Input Cell 

128 D7  Output Cell: Controlled by bit 144 

129 D7  Input Cell   

130 D6  Output Cell: Controlled by bit 144 

131 D6  Input Cell   

132 D5  Output Cell: Controlled by bit 144 

133 D5  Input Cell   

134 D4  Output Cell: Controlled by bit 144 

135 D4  Input Cell   

136 D3  Output Cell: Controlled by bit 144 

137 D3  Input Cell   

138 D2  Output Cell: Controlled by bit 144 

139 D2  Input Cell   

140 D1  Output Cell: Controlled by bit 144 

141 D1  Input Cell   

142 D0  Output Cell: Controlled by bit 144 

143 D0  Input Cell   

144 Control  Direction Control. See Table 4-7.

145 STPLK  Input Cell   

146 FRCMC  Input Cell   

147 PEN  Input Cell   

148 IGNNE  Input Cell   

149 BF  Input Cell   

150 INIT  Input Cell   

151 SMI  Input Cell   

152 R/S  Input Cell   

153 NMI  Input Cell   

154 INTR  Input Cell   

155 A21  Output Cell: Controlled by bit 213 

156 A21  Input Cell   

Table 4-8.   Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments
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157 A22  Output Cell: Controlled by bit 213 

158 A22  Input Cell   

159 A23  Output Cell: Controlled by bit 213 

160 A23  Input Cell   

161 A24  Output Cell: Controlled by bit 213 

162 A24  Input Cell   

163 A25  Output Cell: Controlled by bit 213 

164 A25  Input Cell   

165 A26  Output Cell: Controlled by bit 213 

166 A26  Input Cell   

167 A27  Output Cell: Controlled by bit 213 

168 A27  Input Cell   

169 A28  Output Cell: Controlled by bit 213 

170 A28  Input Cell   

171 A29  Output Cell: Controlled by bit 213 

172 A29  Input Cell   

173 A30  Output Cell: Controlled by bit 213 

174 A30  Input Cell   

175 A31  Output Cell: Controlled by bit 213 

176 A31  Input Cell   

177 A3  Output Cell: Controlled by bit 213 

178 A3  Input Cell   

179 A4  Output Cell: Controlled by bit 213 

180 A4  Input Cell   

181 A5  Output Cell: Controlled by bit 213 

182 A5  Input Cell   

183 A6  Output Cell: Controlled by bit 213 

184 A6  Input Cell   

185 A7  Output Cell: Controlled by bit 213 

186 A7  Input Cell   

187 A8  Output Cell: Controlled by bit 213 

188 A8  Input Cell   

189 A9  Output Cell: Controlled by bit 213 

190 A9  Input Cell   

Table 4-8.   Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments
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191 A10  Output Cell: Controlled by bit 213 

192 A10  Input Cell   

193 A11  Output Cell: Controlled by bit 213 

194 A11  Input Cell   

195 A12  Output Cell: Controlled by bit 213 

196 A12  Input Cell   

197 A13  Output Cell: Controlled by bit 213 

198 A13  Input Cell   

199 A14  Output Cell: Controlled by bit 213 

200 A14  Input Cell   

201 A15  Output Cell: Controlled by bit 213 

202 A15  Input Cell   

203 A16  Output Cell: Controlled by bit 213 

204 A16  Input Cell   

205 A17  Output Cell: Controlled by bit 213 

206 A17  Input Cell   

207 A18  Output Cell: Controlled by bit 213 

208 A18  Input Cell   

209 A19  Output Cell: Controlled by bit 213 

210 A19  Input Cell   

211 A20  Output Cell: Controlled by bit 213 

212 A20  Input Cell   

213 Control  Direction Control. See Table 4-7.

214 SCYC  Output Cell: Controlled by bit 257 

215 RESET  Input Cell   

216 BE7  Output Cell: Controlled by bit 257 

217 BE6  Output Cell: Controlled by bit 257 

218 BE5  Output Cell: Controlled by bit 257 

219 BE4  Output Cell: Controlled by bit 257 

220 BE3  Output Cell: Controlled by bit 257 

221 BE2  Output Cell: Controlled by bit 257 

222 BE1  Output Cell: Controlled by bit 257 

223 BE0 Output Cell: Controlled by bit 257

224 W/R  Output Cell: Controlled by bit 257 

Table 4-8.   Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments
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225 HIT  Output Cell   

226 CLK  Clock

227 ADSC  Output Cell: Controlled by bit 257 

228 ADS  Output Cell: Controlled by bit 257 

229 CACHE  Output Cell: Controlled by bit 257 

230 BRDYC  Input Cell   

231 BRDY  Input Cell   

232 EADS  Input Cell   

233 PWT  Output Cell: Controlled by bit 257 

234 LOCK  Output Cell: Controlled by bit 257 

235 PCD  Output Cell: Controlled by bit 257 

236 WB/WT  Input Cell   

237 HITM  Output Cell   

238 KEN  Input Cell   

239 AHOLD  Input Cell   

240 BOFF  Input Cell   

241 HLDA  Output Cell   

242 HOLD  Input Cell   

243 NA  Input Cell   

244 EWBE  Input Cell   

245 M/IO  Output Cell: Controlled by bit 257 

246 FLUSH  Input Cell   

247 A20M  Input Cell   

248 BUSCHK  Input Cell   

249 AP  Output Cell: Controlled by bit 213 

250 AP  Input Cell   

251 D/C  Output Cell: Controlled by bit 257 

252 BREQ  Output Cell   

253 SMIACT  Output Cell   

254 PCHK  Output Cell   

255 APCHK  Output Cell   

256 PRDY  Output Cell   

257 Control  Direction Control. See Table 4-7.

258 INV  Input Cell   

Table 4-8.   Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments
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259 FERR  Output Cell   

260 IERR  Output Cell 

Table 4-9.   Boundary Scan Register Bit Definitions (Models 1, 2, and 3)

Bit Pin Name Comments

0 DP7 Output Cell: Controlled by bit 144

1 DP7 Input Cell   

2 D63 Output Cell: Controlled by bit 144

3 D63 Input Cell   

4 D62 Output Cell: Controlled by bit 144

5 D62 Input Cell   

6 D61 Output Cell: Controlled by bit 144 

7 D61 Input Cell   

8 D60 Output Cell: Controlled by bit 144 

9 D60 Input Cell   

10 D59 Output Cell: Controlled by bit 144 

11 D59 Input Cell   

12 D58 Output Cell: Controlled by bit 144 

13 D58 Input Cell   

14 D57 Output Cell: Controlled by bit 144 

15 D57 Input Cell   

16 D56 Output Cell: Controlled by bit 144 

17 D56 Input Cell   

18 DP6 Output Cell: Controlled by bit 144 

19 DP6 Input Cell   

20 D55 Output Cell: Controlled by bit 144 

21 D55 Input Cell   

22 D54 Output Cell: Controlled by bit 144 

23 D54 Input Cell   

24 D53 Output Cell: Controlled by bit 144 

25 D53 Input Cell   

26 D52 Output Cell: Controlled by bit 144 

27 D52 Input Cell   

Table 4-8.   Boundary Scan Register Bit Definitions (Model 0) (continued)

Bit Pin Name Comments
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28 D51 Output Cell: Controlled by bit 144 

29 D51 Input Cell   

30 D50 Output Cell: Controlled by bit 144 

31 D50 Input Cell   

32 D49 Output Cell: Controlled by bit 144 

33 D49 Input Cell   

34 D48 Output Cell: Controlled by bit 144 

35 D48 Input Cell   

36 DP5 Output Cell: Controlled by bit 144 

37 DP5 Input Cell   

38 D47 Output Cell: Controlled by bit 144 

39 D47 Input Cell   

40 D46 Output Cell: Controlled by bit 144 

41 D46 Input Cell   

42 D45 Output Cell: Controlled by bit 144 

43 D45 Input Cell   

44 D44 Output Cell: Controlled by bit 144 

45 D44 Input Cell   

46 D43 Output Cell: Controlled by bit 144 

47 D43 Input Cell   

48 D42 Output Cell: Controlled by bit 144 

49 D42 Input Cell   

50 D41 Output Cell: Controlled by bit 144 

51 D41 Input Cell   

52 D40 Output Cell: Controlled by bit 144 

53 D40 Input Cell   

54 DP4 Output Cell: Controlled by bit 144 

55 DP4 Input Cell   

56 D39 Output Cell: Controlled by bit 144 

57 D39 Input Cell   

58 D38 Output Cell: Controlled by bit 144 

59 D38 Input Cell   

60 D37 Output Cell: Controlled by bit 144 

61 D37 Input Cell   

Table 4-9.   Boundary Scan Register Bit Definitions (Models 1, 2, and 3) 

Bit Pin Name Comments
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62 D36 Output Cell: Controlled by bit 144 

63 D36 Input Cell   

64 D35 Output Cell: Controlled by bit 144 

65 D35 Input Cell   

66 D34 Output Cell: Controlled by bit 144 

67 D34 Input Cell   

68 D33 Output Cell: Controlled by bit 144 

69 D33 Input Cell   

70 D32 Output Cell: Controlled by bit 144 

71 D32 Input Cell   

72 DP3 Output Cell: Controlled by bit 144 

73 DP3 Input Cell   

74 D31 Output Cell: Controlled by bit 144 

75 D31 Input Cell   

76 D30 Output Cell: Controlled by bit 144 

77 D30 Input Cell   

78 D29 Output Cell: Controlled by bit 144 

79 D29 Input Cell   

80 D28 Output Cell: Controlled by bit 144 

81 D28 Input Cell   

82 D27 Output Cell: Controlled by bit 144 

83 D27 Input Cell   

84 D26 Output Cell: Controlled by bit 144 

85 D26 Input Cell   

86 D25 Output Cell: Controlled by bit 144 

87 D25 Input Cell   

88 D24 Output Cell: Controlled by bit 144 

89 D24 Input Cell   

90 DP2 Output Cell: Controlled by bit 144 

91 DP2 Input Cell   

92 D23 Output Cell: Controlled by bit 144 

93 D23 Input Cell   

94 D22 Output Cell: Controlled by bit 144 

95 D22 Input Cell   

Table 4-9.   Boundary Scan Register Bit Definitions (Models 1, 2, and 3) 

Bit Pin Name Comments



Boundary Scan Architecture Support 107

20007E/0—Jan1997 AMD-K5 Processor Software Development Guide

96 D21 Output Cell: Controlled by bit 144 

97 D21 Input Cell   

98 D20 Output Cell: Controlled by bit 144 

99 D20 Input Cell   

100 D19 Output Cell: Controlled by bit 144 

101 D19 Input Cell   

102 D18 Output Cell: Controlled by bit 144 

103 D18 Input Cell   

104 D17  Output Cell: Controlled by bit 144 

105 D17  Input Cell   

106 D16  Output Cell: Controlled by bit 144 

107 D16  Input Cell   

108 DP1  Output Cell: Controlled by bit 144 

109 DP1  Input Cell   

110 D15  Output Cell: Controlled by bit 144 

111 D15  Input Cell   

112 D14  Output Cell: Controlled by bit 144 

113 D14  Input Cell   

114 D13  Output Cell: Controlled by bit 144 

115 D13  Input Cell   

116 D12  Output Cell: Controlled by bit 144 

117 D12  Input Cell   

118 D11  Output Cell: Controlled by bit 144 

119 D11  Input Cell   

120 D10  Output Cell: Controlled by bit 144 

121 D10  Input Cell   

122 D9  Output Cell: Controlled by bit 144 

123 D9  Input Cell   

124 D8  Output Cell: Controlled by bit 144 

125 D8  Input Cell   

126 DP  Output Cell: Controlled by bit 144 

127 DP  Input Cell 

128 D7  Output Cell: Controlled by bit 144 

129 D7  Input Cell   

Table 4-9.   Boundary Scan Register Bit Definitions (Models 1, 2, and 3) 

Bit Pin Name Comments
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130 D6  Output Cell: Controlled by bit 144 

131 D6  Input Cell   

132 D5  Output Cell: Controlled by bit 144 

133 D5  Input Cell   

134 D4  Output Cell: Controlled by bit 144 

135 D4  Input Cell   

136 D3  Output Cell: Controlled by bit 144 

137 D3  Input Cell   

138 D2  Output Cell: Controlled by bit 144 

139 D2  Input Cell   

140 D1  Output Cell: Controlled by bit 144 

141 D1  Input Cell   

142 D0  Output Cell: Controlled by bit 144 

143 D0  Input Cell   

144 Control  Direction Control. See Table 4-7.

145 STPLK  Input Cell   

146 BF1 Input Cell

147 FRCMC  Input Cell   

148 PEN  Input Cell   

149 IGNNE  Input Cell   

150 BF0  Input Cell   

151 INIT  Input Cell   

152 SMI  Input Cell   

153 R/S  Input Cell   

154 NMI  Input Cell   

155 INTR  Input Cell   

156 A21  Output Cell: Controlled by bit 213 

157 A21  Input Cell   

158 A22  Output Cell: Controlled by bit 213 

159 A22  Input Cell   

160 A23  Output Cell: Controlled by bit 213 

161 A23  Input Cell   

162 A24  Output Cell: Controlled by bit 213 

163 A24  Input Cell   

Table 4-9.   Boundary Scan Register Bit Definitions (Models 1, 2, and 3) 

Bit Pin Name Comments
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164 A25  Output Cell: Controlled by bit 213 

165 A25  Input Cell   

166 A26  Output Cell: Controlled by bit 213 

167 A26  Input Cell   

168 A27  Output Cell: Controlled by bit 213 

169 A27  Input Cell   

170 A28  Output Cell: Controlled by bit 213 

171 A28  Input Cell   

172 A29  Output Cell: Controlled by bit 213 

173 A29  Input Cell   

174 A30  Output Cell: Controlled by bit 213 

175 A30  Input Cell   

176 A31  Output Cell: Controlled by bit 213 

177 A31  Input Cell   

178 A3  Output Cell: Controlled by bit 213 

179 A3  Input Cell   

180 A4  Output Cell: Controlled by bit 213 

181 A4  Input Cell   

182 A5  Output Cell: Controlled by bit 213 

183 A5  Input Cell   

184 A6  Output Cell: Controlled by bit 213 

185 A6  Input Cell   

186 A7  Output Cell: Controlled by bit 213 

187 A7  Input Cell   

188 A8  Output Cell: Controlled by bit 213 

189 A8  Input Cell   

190 A9  Output Cell: Controlled by bit 213 

191 A9  Input Cell   

192 A10  Output Cell: Controlled by bit 213 

193 A10  Input Cell   

194 A11  Output Cell: Controlled by bit 213 

195 A11  Input Cell   

196 A12  Output Cell: Controlled by bit 213 

197 A12  Input Cell   

Table 4-9.   Boundary Scan Register Bit Definitions (Models 1, 2, and 3) 

Bit Pin Name Comments
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198 A13  Output Cell: Controlled by bit 213 

199 A13  Input Cell   

200 A14  Output Cell: Controlled by bit 213 

201 A14  Input Cell   

202 A15  Output Cell: Controlled by bit 213 

203 A15  Input Cell   

204 A16  Output Cell: Controlled by bit 213 

205 A16  Input Cell   

206 A17  Output Cell: Controlled by bit 213 

207 A17  Input Cell   

208 A18  Output Cell: Controlled by bit 213 

209 A18  Input Cell   

210 A19  Output Cell: Controlled by bit 213 

211 A19  Input Cell   

212 A20  Output Cell: Controlled by bit 213 

213 A20  Input Cell   

214 Control  Direction Control. See Table 4-7.

215 SCYC  Output Cell: Controlled by bit 257 

216 RESET  Input Cell   

217 BE7  Output Cell: Controlled by bit 257 

218 BE6  Output Cell: Controlled by bit 257 

219 BE5  Output Cell: Controlled by bit 257 

220 BE4  Output Cell: Controlled by bit 257 

221 BE3  Output Cell: Controlled by bit 257 

222 BE2  Output Cell: Controlled by bit 257 

223 BE1  Output Cell: Controlled by bit 257 

224 BE0 Output Cell: Controlled by bit 257

225 W/R  Output Cell: Controlled by bit 257 

226 HIT  Output Cell   

227 CLK  Clock

228 ADSC  Output Cell: Controlled by bit 257 

229 ADS  Output Cell: Controlled by bit 257 

230 CACHE  Output Cell: Controlled by bit 257 

231 BRDYC  Input Cell   

Table 4-9.   Boundary Scan Register Bit Definitions (Models 1, 2, and 3) 

Bit Pin Name Comments
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232 BRDY  Input Cell   

233 EADS  Input Cell   

234 PWT  Output Cell: Controlled by bit 257 

235 LOCK  Output Cell: Controlled by bit 257 

236 PCD  Output Cell: Controlled by bit 257 

237 WB/WT  Input Cell   

238 HITM  Output Cell   

239 KEN  Input Cell   

240 AHOLD  Input Cell   

241 BOFF  Input Cell   

242 HLDA  Output Cell   

243 HOLD  Input Cell   

244 NA  Input Cell   

245 EWBE  Input Cell   

246 M/IO  Output Cell: Controlled by bit 257 

247 FLUSH  Input Cell   

248 A20M  Input Cell   

249 BUSCHK  Input Cell   

250 AP  Output Cell: Controlled by bit 213 

251 AP  Input Cell   

252 D/C  Output Cell: Controlled by bit 257 

253 BREQ  Output Cell   

254 SMIACT  Output Cell   

255 PCHK  Output Cell   

256 APCHK  Output Cell   

257 PRDY  Output Cell   

258 Control  Direction Control. See Table 4-7.

259 INV  Input Cell   

260 FERR  Output Cell   

261 IERR  Output Cell 

Table 4-9.   Boundary Scan Register Bit Definitions (Models 1, 2, and 3) 

Bit Pin Name Comments
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Hardware Debug Tool (HDT)

The Hardware Debug Tool (HDT)—sometimes referred to as 
the debug port or Probe Mode—is a collection of signals, regis-
ters, and processor microcode that is enabled when external 
debug logic drives R/S Low or loads the processor’s Test Access 
Port (TAP) instruction register with the USEHDT instruction. 
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Appendix A

Cache

The individual locations of all SRAM arrays on the AMD-K5 
microprocessor are accessible with the RDMSR and WRMSR 
instructions. To access an array location, set up the Array 
Access MSR code (82h) in ECX, and the array pointer 
(described below) in EDX. EAX holds the data to be read or 
written.

A.1 Array Pointer Formats

Note: The term “column” in this description refers to the “way”—
one of the four blocks in the 4-way associative set at a par-
ticular index.

The array pointer in EDX specifies a particular array, column, 
index, and possibly word or dword, depending on the array to 
be accessed.
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Table A-2 defines the array identification value to be used 
when accessing the various arrays.

Table A-1.   Cache Array Pointer Formats

Bits 29–28 27–20 19 18–13 12 11 10 9 8 7–0

DCACHE tag 
array Column NA NA tag array 

index NA NA NA NA NA array to be 
accessed

DCACHE 
dword and 
data array 
index in block

Column NA NA
data array 
index

DCACHE dword index 
into the block NA NA

array to be 
accessed

ICACHE index 
and word—
Model 0

Column NA ICACHE index for all ICACHE 
arrays

ICACHE word (two 
instruction bytes + 
associated prede-
code information

NA array to be 
accessed

ICACHE index 
and word—
Model 1

Column NA ICACHE index for all 
ICACHE arrays

ICACHE 
Packet 
Select

NA

ICACHE word (two 
instruction bytes + 
associated prede-
code information

array to be 
accessed

4-Kbyte TLB 
index

Column NA NA NA TLB index array to be 
accessed

4-Mbyte TLB 
index

Column NA NA NA NA NA NA NA NA array to be 
accessed

Notes:
For the instruction cache and data cache, the index/dword/word fields line up with a normal address, except that they are shifted to 
the left by 8 bits.

Table A-2.   Cache Array Identification Values

Bits 7–0 (MSB to LSB) Array to be Accessed

00h Data Cache Array

E1h Data Cache Linear Tag/Status Array

ECh Data Cache Physical Tag Array

E4h Instruction Cache Store Array

E5h Instruction Cache Linear Tag Array

EDh Instruction Cache Physical Tag Array

E6h Instruction Cache Valid Bit Array

E7h Instruction Cache Branch Prediction Array

E8h Translation Lookaside Buffer 4-Kbyte Page Frame/Status Array
Notes:

Although EDX is normally cleared on RDMSR, it remains intact during array accesses.
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A.2 AMD-K5 Model 0 Array Data Formats

E9h Translation Lookaside Buffer 4-Kbyte Linear Tag Array

Eah Translation Lookaside Buffer 4–MByte Page Frame/Status Array

Ebh Translation Lookaside Buffer 4–MByte Virtual Tag Array

Table A-3.   AMD-K5 Model 0 ICACHE Physical Tags

Bits 31–21 Bit 20 Bits 19–0

0 Valid Bit Tag (Physical Address 31–12)

Table A-4.   AMD-K5 Model 0 DCACHE Physical Tags

Bits 31–23 Bits 22–21 Bits 20–0

0 MESI (00=invalid, 01=shared, 10=modified, 11=exclusive) Tag (Physical Address 31–11)

Table A-5.   AMD-K5 Model 0 DCACHE Data

Bits 31–0

Data

Table A-6.   AMD-K5 Model 0 DCACHE Linear Tag

Bit 27 Bit 26 Bit 25 Bit 24 Bit 23 Bit 22 Bit 21 Bits 20–0

PCD PWT Dirty Bit User/Supervisor Bit R/W Bit 0 Linear Valid Bit Tag

Table A-2.   Cache Array Identification Values (continued)

Bits 7–0 (MSB to LSB) Array to be Accessed

Notes:
Although EDX is normally cleared on RDMSR, it remains intact during array accesses.
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Table A-7.   AMD-K5 Model 0 ICACHE Instructions

Bit
25

Bit
24

Bit
23

Bit
22–21

Bit
20–13

Bit
12

Bit
11

Bit
10

Bit
9–8

Bit
7–0

prefix 1 byte 1 prefix 0 byte 0

start
bit end bit opcode

bit
map

(rops/mrom) byte 1 start
bit

end
bit

opcode
bit

map
(rops/mrom) byte 0

Table A-8.   AMD-K5 Model 0 ICACHE Linear Tag

Bits 19–0

Linear Address 31–12

Table A-9.   AMD-K5 Model 0 ICACHE Valid Bits

Bits 31–19 Bit 18 Bit 17 Bit 16 Bits 15–0

0 D linear tag valid bit user/supervisor byte-valid bits

Table A-10.   AMD-K5 Model 0 ICACHE Branch Prediction

Bits 31–19 Bit 18 Bits 17–14 Bits 13–12 Bits 11–4 Bits 3–0

0
predicted

taken
byte offset within block of last byte 

of predicted branch instruction
column of 

predicted target

index of 
predicted 

target

target
byte

Table A-11.   AMD-K5 Model 0 TLB 4-Kbyte Linear Tag

Bits 31–20 Bit 19 Bit 18 Bit 17 Bit 16 Bit 15 Bits 14–0

0 global valid 
bit dirty bit user/supervisor

bit
read/write

bit valid bit tag 
(linear address 31–17)
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A.3 AMD-K5 Models 1, 2, and 3 Array Data Formats

Table A-12.   AMD-K5 Model 0 TLB 4-Kbyte Physical Page Frame

Bits 31–22 Bit 21 Bit 20 Bit 19–0

0 PCD bit PWT bit Page frame address
(physical address 31–12)

Table A-13.   AMD-K5 Model 0 TLB 4-Mbyte Virtual Tag

Bits 31–15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9–0

0 Global valid bit dirty bit user/supervisor read/write bit valid bit
tag

(linear address 31–22)

Table A-14.   AMD-K5 Model 0 TLB 4-Mbyte Physical Page Frame

Bits 31–12 Bit 11 Bit 10 Bits 9–0

0 PCD bit PWT bit Page frame address
(physical address 31–22)

Table A-15.   AMD-K5 Models 1, 2, and 3 ICACHE Physical Tags

Bits 31–21 Bit 20 Bits 19–0

0 Valid Bit Tag (Physical Address 31–12)

Table A-16.   AMD-K5 Models 1, 2, and 3 DCACHE Physical Tags

Bits 31–23 Bits 22–21 Bits 20–0

0 MESI (00=invalid, 01=shared, 10=modified, 11=exclusive) Tag (Physical Address 31–11)

Table A-17.   AMD-K5 Models 1, 2, and 3 DCACHE Data

Bits 31–0

Data



A-6

AMD-K5 Processor Software Development Guide 20007E/0—Jan1997

Table A-18.   AMD-K5 Models 1, 2, and 3 DCACHE Linear Tag

Bit 28 Bit 27 Bit 26 Bit 25 Bit 24 Bit 23 Bit 22 Bit 21 Bits 20–0

WB PCD PWT Dirty Bit User/Supervisor Bit R/W Bit 0 Linear Valid Bit Tag

Table A-19.   AMD-K5 Models 1, 2, and 3 ICACHE Instructions

Bit
25

Bit
24

Bit
23

Bit
22–21

Bit
20–13

Bit
12

Bit
11

Bit
10

Bit
9–8

Bit
7–0

prefix 1
byte 

(n + 8) prefix 0 byte (n)

start
bit end bit

opcode
bit

map
(rops/mrom)

byte
(n + 8)

start
bit

end
bit

opcode
bit

map
(rops/mrom) byte (n)

Table A-20.   AMD-K5 Models 1, 2, and 3 ICACHE Linear Tag

Bit 22 Bit 21 Bit 20 Bits 19–0

D Linear Valid Bit User/Supervisor Bit Linear Address 31–12

Table A-21.   AMD-K5 Models 1, 2, and 3 ICACHE Valid Bits

Bits 31–0

byte-valid bits

Table A-22.   AMD-K5 Models 1, 2, and 3 ICACHE Branch Prediction

Bits 31–19 Bit 18 Bits 17–14 Bits 13–12 Bits 11–4 Bits 3–0

0 predicted
taken

byte offset within block of last byte 
of predicted branch instruction

column of 
predicted target

index of 
predicted 

target

target
byte

Table A-23.   AMD-K5 Models 1, 2, and 3 TLB 4-Kbyte Linear Tag

Bits 31–20 Bit 19 Bit 18 Bit 17 Bit 16 Bit 15 Bits 14–0

0 global valid 
bit dirty bit user/supervisor

bit
read/write

bit valid bit tag 
(linear address 31–17)

Table A-24.   AMD-K5 Models 1, 2, and 3 TLB 4-Kbyte Physical Page Frame

Bits 31–22 Bit 21 Bit 20 Bit 19–0
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0 PCD bit PWT bit
Page frame address

(physical address 31–12)

Table A-25.   AMD-K5 Models 1, 2, and 3 TLB 4-Mbyte Virtual Tag

Bits 31–15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9–0

0 Global valid bit dirty bit user/supervisor read/write bit valid bit
tag

(linear address 31–22)

Table A-26.   AMD-K5 Models 1, 2, and 3 TLB 4-Mbyte Physical Page Frame

Bits 31–12 Bit 11 Bit 10 Bits 9–0

0 PCD bit PWT bit Page frame address
(physical address 31–22)

Table A-24.   AMD-K5 Models 1, 2, and 3 TLB 4-Kbyte Physical Page Frame
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